

HPV 900 Series 2 AC/PM Elevator Drive

Technical Manual

WARRANTY

Standard products manufactured by the Company are warranted to be free from defects in workmanship and material for a period of one year from the date of shipment, and any products which are defective in workmanship or material will be repaired or replaced, at the Company's option, at no charge to the Buyer. Final determination as to whether a product is actually defective rests with the Company. The obligation of the Company hereunder shall be limited solely to repair or replace, at the Company's discretion, products that fall within the foregoing limitations, and shall be conditioned upon receipt by the Company of written notice of any alleged defects or deficiency promptly after discovery and within the warranty period, and in the case of components or units purchased by the Company, the obligation of the Company shall not exceed the settlement that the Company is able to obtain from the supplier thereof. No products shall be returned to the Company without its prior consent. Products which the company consents to have returned shall be shipped prepaid f.o.b. the Company factory. The Company cannot assume responsibility or accept invoices for unauthorized repairs to its components, even though defective. The life of the products the Company depends, to a large extent, upon type of usage thereof and THE COMPANY MAKES NO WARRANTY AS TO FITNESS OF ITS PRODUCTS FOR THE SPECIFIC APPLICATIONS BY THE BUYER NOR AS TO PERIOD OF SERVICE UNLESS THE COMPANY SPECIFICALLY AGREES OTHERWISE IN WRITING AFTER PROPOSED USAGE HAS BEEN MADE KNOWN TO IT.

This warranty does not apply to experimental products for which no warranty is made or given and Buyer waives any claim thereto.

THE FOREGOING WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT LIMITED TO, ANY WARRANTY OF MECHANTIBILITY OR OF FITNESS FOR A PARTICULAR PURPOSE AND BUYER HEREBY WAIVES ANY AND ALL CLAIMS THEREFORE.

LIMITATIONS IN NO EVENT SHALL MAGNETEK BE LIABLE FOR LOSS OF PROFIT, OF LIABILITY INDIRECT, CONSEQUENTIAL OR INCIDENTAL DAMAGES WHETHER ARISING OUT OF WARRANTY, BREACH OF CONTRACT OR TORT.

HPV 900 S2 and Series 2 is a trademark of Magnetek, Inc.

All rights reserved. No part of this publication may be reproduced or used in any form or by any means - graphic, electronic, or mechanical including photocopying, recording, taping, or information storage and retrieval systems - without written permission of the publisher.

© 2011 Magnetek, Inc.

Table of Contents

HPV 900 Series 2 Drive Ratings	3
Introduction	13
Drive Specifications	13
Drive Derating	14
Drive Model Number	14
Real Time Clock Setup	16
Terminals	17
Interconnections	23
Parameters	33
Menus	35
Adjust A0 Menu	42
Drive A1 Submenu	42
S-Curves A2 Submenu	62
Multistep Ref A3 Submenu	64
Power Convert A4 Submenu	66
Motor A5 Submenu	72
Configure C0 Menu	78
User Switches C1 Submenu	78
Logic Inputs C2 Submenu	94
Logic Outputs C3 Submenu	96
Analog Outputs C4 Submenu	99
Display D0 Menu	100
Elevator Data D1 Submenu	100
Power Data D2 Submenu	104
Utility U0 Menu	106
Fault F0 Menu	113
Maintenance	115
Troubleshooting	116
Troubleshooting Guide	117
Appendix	135
Closed Loop Adaptive Tune	135
Estimating System Inertia	138
Motor Parameter Calculations - Induction	139
Motor Parameter Calculations – Permanent Magnet	141
PM Start-Up Procedure	142

	Rotor Alignment Procedure	. 144
	Auto-Tune Procedure	. 148
	Fine Tune Alignment Procedure	. 149
	Open-loop Start-Up Procedure	. 150
	Open-Loop Performance Adjustments	. 152
	Testpoints (Control Board)	. 159
	Testpoints (EnDat Option Card - Power Supplies)	. 160
	Testpoints (EnDat Option Card - Other)	. 161
	Elevator Duty Cycle	. 162
	CE Guidelines	. 164
	Dimensions, Mounting Holes, & Weights	. 166
	Dynamic Braking Resistor Selection – Worm Gear	. 172
	Dynamic Braking Resistor Selection – Planetary Gear	. 173
	Dynamic Braking Resistor Fusing Selection	. 174
	Three-Phase AC Input Reactor Selection	. 175
	Three-Phase AC Harmonic Filter Selection	. 176
	AC Input Fusing Selection	. 177
	Line Filter Selection	. 178
	Selecting and Mounting of Encoder	. 179
	Suggested Wire Sizes	. 184
	Input / Output Rating	. 185
	Single Phase Ratings	. 186
	Carrier Frequency Ratings	. 187
	Watts Loss	. 189
	Relay Specifications	. 190
	Replacement Parts	. 191
In	dex	. 192

HPV 900 Series 2 Drive Ratings

Rated Input Voltage	NA ¹ Rated HP	EU ¹ Rated HP	NA ¹ Rated kW	EU ¹ Rated kW	Continuous Output Current General Purpose Rating	Continuous Output Current Elevator Duty Cycle ² Rating	Maximum Output Current for 5 Sec	Frame Size ³	Model Number⁴
	7.5		5.5		25	27	62.5	2	HPV900-2025-2E1-01
2	10		7.5	-	31	33	77.5	2	HPV900-2031-2E1-01
3	15		11		41	44	102.5	3.5/4	HPV900-2041-2E1-01
0	20		15		52	56	130	3.5/4	HPV900-2052-2E1-01
V	25		19		75	80	187.5	4	HPV900-2075-2E1-01
	30		22		88	94	220	4	HPV900-2088-2E1-01
	40		30		98	105	245	5	HPV900-2098-2E1-01
	5	5	3.7	3.7	8	9	20	1	HPV900-4008-2E1-01
	7.5	5.5	5.5	4	12	13	30	2	HPV900-4012-2E1-01
	10	7.5	7.5	5.5	16	17	40	2	HPV900-4016-2E1-01
	15	10	11	7.5	21	23	52.5	3	HPV900-4021-2E1-01
4	20	15	15	11	27	29	67.5	3	HPV900-4027-2E1-01
6	25	20	19	15	34	36	85	4	HPV900-4034-2E1-01
0	30	25	22	18.5	41	44	102.5	4	HPV900-4041-2E1-01
V	40	30	30	22	52	56	130	4	HPV900-4052-2E1-01
	50	40	37	30	65	70	162.5	5	HPV900-4065-2E1-01
	60	50	45	37	72	77	180	5	HPV900-4072-2E1-01
	75	60	56	45	96	103	240	5	HPV900-4096-2E1-01

Table 1: HPV 900 Series 2 Drive Ratings

NOTE: all ratings at 60/50Hz and 10 kHz carrier frequency all ratings for based on a geared elevator application,

For more information on altitude, temperature, and carrier frequency derating, see Drive Derating on page 14.

¹ NA refers to drives sold in North America and ratings are based off of 460VAC input. EU refers to drives sold in Europe and are based off of 400VAC input

² For more information on the Elevator Duty Cycle Rating, see page 165

³ Cube size dimensions, mounting holes, and weights are shown in Dimensions, Mounting Holes and Weights on page 169

⁴ For more information on model numbers, see page 14.

				Def					
Submenu	Parameter	Units	Range	ENGLISH (U3)	METRIC (U3)	Site Setting			
A1	Drive A1 Submenu – For details, see Drive A1 Submenu on page 42.								
		fpm	0.0 – 1500.0	400.0	-				
A1	Contract Car Spd	m/s	0.000 - 0.000						
Λ.4	O t t Mt- O t			1130.0 i,iii	0.0				
A1	Contract Mtr Spd	rpm	0.0 – 3000.0	130.0 ⁱⁱ	0.0				
A1 ^{i,ii}	Response i,ii	rad/sec i,ii	1.0 – 50.0 ^{i, ii}	10.	0 ^{i,ii}				
A1 ^{i,ii}	Inertia ^{i,ii}	sec i,#	0.25 – 50.00 ^{i,ii}		0 ',"				
A1	Encoder Pulses	PPR	500 – 40000		24 1, 111				
					000 "				
A1"	Serial Cnts/Rev ii	none "	0 – 25000 ⁱⁱ		92 "				
A1	Mtr Torque Limit	%	0.0 – 275.0	_	0.0				
A1 A1 ⁱ	Regen Torq Limit Flux Wkn Factor ⁱ	% % ⁱ	0.0 – 275.0		0.0 00 ⁱ				
A1		1	$60 - 100^{i}$ $0.00 - 10.00$	0.50	2.00				
A1 i,ii	Trq Lim Msg Dly Gain Reduce Mult ^{i,ii}	sec % ^{i,ii}	10 – 100 ^{i,ii}		0 ^{i,ii}				
A1 i,ii	Gain Chng Level i,ii	% ^{i,ii}	$0.0 - 100.0^{i,ii}$.0 ^{i,ii}	 			
A1 ⁱ	Spd Dev Hi Level ⁱ	% ⁱ	0.0 – 99.9 ⁱ		.0 i				
A1 ^{i,ii}	Ramped Stop Time i,ii	sec i,ii	$0.00 - 2.50^{i,ii}$	0.20 i,ii	0.50 i,ii				
A1	Contact Flt Time	sec	0.10 - 5.00		50				
A1	Contactor DO Dly	sec	0.00 - 5.00		00				
A1	Flt Reset Delay	sec	0 – 120		5				
A1	Flt Resets / Hour	#	0 – 10		3				
A1	Brake Pick Time	sec	0.00 - 5.00		00				
A1 ^{i,ii}	Ab Zero Spd Lev i,ii	% ^{i,#}	$0.00 - 2.00^{i,ii}$	0.0	0 ^{i,ii}				
A1 ^{i,ii}	Ab Off Delay ^{i,ii}	sec i,#	$0.00 - 9.99^{i,ii}$		0 ^{i,#}				
A1 ⁱⁱⁱ	Brake Pick Delay ⁱⁱⁱ	sec ⁱⁱⁱ	$0.00 - 5.00^{iii}$	0.5	50 ⁱⁱⁱ				
A1 ⁱⁱⁱ	Brake Drop Delay ⁱⁱⁱ	sec ⁱⁱⁱ	0.00 - 5.00 ⁱⁱⁱ	0.5	50 ⁱⁱⁱ				
A1	Brake Hold Time	sec	0.00 - 5.00		20				
A1 ⁱⁱⁱ	DC Start Level iii	% ⁱⁱⁱ	0.0 – 150.0 ⁱⁱⁱ	80.0 ⁱⁱⁱ	50.0 ⁱⁱⁱ				
A1 ⁱⁱⁱ	DC Stop Level iii	% ⁱⁱⁱ	0.0 — 150.0 ⁱⁱⁱ		.0 ⁱⁱⁱ				
A1 ⁱⁱⁱ	DC Stop Freq ⁱⁱⁱ	Hz ⁱⁱⁱ	0.0 - 10.0 ⁱⁱⁱ		5 ⁱⁱⁱ				
A1 ⁱⁱⁱ	DC Start Time iii	sec ⁱⁱⁱ	0.00 - 5.00 ⁱⁱⁱ	1.0	00				
A1 ⁱⁱⁱ	DC Stop Time iii	sec ⁱⁱⁱ	0.00 - 5.00 ⁱⁱⁱ	1.0	00				
A1 ^{i,ii}	Overspeed Level i,ii	% ^{i,ii}	100.0 – 150.0 ^{i,ii}		.0 ^{i,ii}				
A1 ^{i,ii}	Overspeed Time i,ii	sec i,ii	0.00 – 9.99 ^{i,ii}	1.0	0 ^{i,ii}				
A1	Overspeed Mult	%	100.0 – 150.0	125.0					
A1 ⁱⁱⁱ	Stalltest Level ⁱⁱⁱ	% ⁱⁱⁱ	$0.0 - 200.0^{iii}$	200.0 ⁱⁱⁱ					
A1 ⁱⁱⁱ	Stall Fault Time iii	sec ⁱⁱⁱ	0.00 - 9.99 ⁱⁱⁱ	5.00 ⁱⁱⁱ					
A1 ⁱⁱⁱ	Slip Comp Time ⁱⁱⁱ	sec ⁱⁱⁱ	0.01 – 2.00	1.50 ⁱⁱⁱ					
A1 ⁱⁱⁱ	Slip Comp Gain iii	none ⁱⁱⁱ	0.00 - 2.00 iii	1.00 ""					
A1 ^{'''}	Torq Boost Time iii	sec ⁱⁱⁱ	0.01 – 1.00	0.05					
A1 ⁱⁱⁱ	Torq Boost Gain iii	none ⁱⁱⁱ	0.00 – 2.00 0.00						
A1 ^{i,ii}	Spd Dev Lo Level i,ii	% ^{1,ii}	0.1 – 20.0 ^{i,ii} 10.0 ^{i,ii} 20.0 ^{i,ii}						
A1 ^{i,ii}	Spd Dev Time i,ii	sec ^{i,ii}	0.00 – 9.99 ^{i,ii}	0.50 ^{i,ii} 5.00 ^{i,ii}					
A1"	Spd Dev Alm Lvl ⁱⁱ	% "	0.00 – 99.9 "		.0 "				
A1 ⁱⁱ	Spd Dev Flt Lvl "	% "	0.00 – 30.0 ⁱⁱ		.0 "				
A1	Up to Spd. Level	%	0.00 - 110.00	80	.00				

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

				Defa		
Submenu	Parameter	Units	Range			Site Setting
A1	Drive A1 Submenu con	tinued				
A1	Zero Speed Level	%	0.00 - 99.99	1.00	25.0	
A1	Zero Speed Time	sec	0.00 - 9.99	0.1	10	
A1	Up/Dwn Threshold	%	0.00 - 9.99	1.0		
A1 ^{i,ii}	Notch Filter Frq i,ii	Hz ^{i,ii}	5 – 60 ^{i,ii}	20	i, <i>ii</i>	
A1 ^{i,ii}	Notch Filt Depth i,ii	% ^{i,ii}	0 – 100 ^{i,ii}	0	i, <i>ii</i>	
A1 i,ii	Run Delay Timer ^{i,ii}	sec i,#	0.00 - 0.99 i,ii	0.00) i, <i>ii</i>	
A1 i,ii	Tach Rate Gain ^{i,ii}	none ^{i,ii}	0.0 - 30.0 i,ii	0.0) i, <i>ii</i>	
A1 ^{i,ii}	Inner Loop Xover i,ii	rad/sec i,ii	0.1 – 20.0 ^{i,ii}	2.0) i, <i>ii</i>	
A1 ^{i,ii}	Spd Phase Margin i,ii	degs ^{i,ii}	45 – 90 ^{i,ii}	80		
A1	Spd Command Bias	volts	-6.00 - +6.00	0.0	00	
A1	Spd Command Mult	none	-10.00 - +10.00	1.0	00	
A1 ^{i,ii}	Pre Torque Bias i,ii	volts ^{i,ii}	-6.00 – 6.00 ^{i,ii}	0.00		
A1 ^{i,ii}	Pre Torque Mult i,ii	none ^{i,ii}	-10.00 - +10.00 i,ii	1.00	O ^{i,ii}	
A1 ^{i,ii}	Pre Torque Time i,ii	sec ^{i,ii}	0.00 - 10.00 i,ii	0.00	O ^{i,ii}	
A1 ^{i,ii}	Ext Torque Bias i,ii	volts ^{i,ii}	-6.00 - +6.00 i,ii	0.00		
A1 ^{i,ii}	Ext Torque Mult i,ii	none ^{i,#}	-10.00 - +10.00 i,ii	1.00	O ^{i,ii}	
A1	Ana 1 Out Offset	%	-99.9 - +99.9	0.	0	
A1	Ana 2 Out Offset	%	-99.9 - +99.9	0.	0	
A1	Ana 1 Out Gain	none	0.0 - 10.0	1.	0	
A1	Ana 2 Out Gain	none	0.0 – 10.0	1.	0	
A1	Ser2 Insp Spd	ft/ min	0.0 – 100.0	30.0	-	
	оет тізр ора	m/ sec	0.000 - 0.500	-	0.150	
A1	Ser2 Rs Crp Spd	ft/ min	0.0 - 300.0	10.0	-	
Λ1		m/ sec	0.000 - 1.540	- 100	0.050	
A1	Ser2 Rs Crp Time Ser2 Flt Tol	sec	0.0 - 200.0 0.00 - 2.00	180		
A1 "	Arb Start Time "	sec "	0.00 - 2.00	0.5		
A1 "	Arb Start Time Arb Decay Rate "	none "	0.000 - 0.999 "	0.90		
A1 "	ARB Inertia ⁱⁱ	none "	0.10 - 4.00 "			
A1 "	ARB Torque Time "	sec "	0.000 - 1.000 "	1.00 ⁱⁱ 0.015 ⁱⁱ		
A1	Mains Dip Speed	%	5.00 - 99.99			
A1	Mspd Delay 1-4	% sec	0.000 - 10.000	25.00 0.000		
A1	Mid Speed Level	%	0.000 - 10.000	†		
A1 "	Encdr Flt Sense "	% ⁱⁱ	10 – 100 "	80.00 30 ⁱⁱ		
A1 "	ARB Deadband "	none ⁱⁱ	0 – 65535 "	0 ⁱⁱ		
A1 "	Abs Ref Offset "	degs "	-180.00 - +180.00 ⁱⁱ		0.00 ⁱⁱ	
A1 ⁱⁱⁱ	Cont Dwell Time iii	sec iii	0.00 - 5.00 iii	0.50 ⁱⁱⁱ		

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

				Default		
Submenu	Parameter	Units	Range	ENGLISH (U3)	METRIC (U3)	Site Setting
40	C Comment At Cook manner	. For details and				
A2	S-Curves A2 Subment				oage 62.	T
A2	Accel Rate 0	ft/s ²	0.00 - 7.99	3.00	-	
, ,	710001114100	m/s ²	0.000 - 3.999	-	0.800	
A2	Decel Rate 0	ft/s ²	0.00 - 7.99	3.00	-	
, ,	50001 Tato 0	m/s ²	0.000 - 3.999	-	0.800	
A2	Accel Jerk In 0	ft/s ³	0.0 – 29.9	8.0	-	
,	rioder derik iir d	m/s ³	0.00 - 9.99	-	0.60	
A2	Accel Jerk Out 0	ft/s ³	0.0 – 29.9	8.0	-	
	7 tooor cont out o	m/s ³	0.00 - 9.99	-	0.60	
A2	Decel Jerk In 0	ft/s ³	0.0 – 29.9	8.0	-	
/ _	December with a	m/s ³	0.00 - 9.99	-	0.60	
A2	Decel Jerk Out 0	ft/s ³	0.0 - 29.9	8.0	-	
/ _	DOGGIOGIN OUL O	m/s ³	0.00 - 9.99	-	0.60	
A2	Accel Rate 1	ft/s ²	0.00 - 7.99	3.00	-	
Λ4	ACCELLATE 1	m/s ²	0.000 - 3.999	-	0.800	
A2	Decel Rate 1	ft/s ²	0.00 - 7.99	3.00	-	
AZ	Decei Nale 1	m/s ²	0.000 - 3.999	-	0.800	
A2	Accel Jerk In 1	ft/s ³	0.0 - 29.9	8.0	-	
AZ	Accer Jerk III 1	m/s ³	0.00 - 9.99	-	0.60	
A2	Accel Jerk Out 1	ft/s ³	0.0 - 29.9	8.0	-	
AZ		m/s ³	0.00 - 9.99	-	0.60	
۸۵	Dood Jork In 1	ft/s ³	0.0 - 29.9	8.0	-	
A2	Decel Jerk In 1	m/s ³	0.00 - 9.99	-	0.60	
۸۵	Dogal Jark Out 1	ft/s ³	0.0 - 29.9	8.0	-	
A2	Decel Jerk Out 1	m/s ³	0.00 - 9.99	-	0.60	
۸۵	Accel Data O	ft/s ²	0.00 - 7.99	3.00	-	
A2	Accel Rate 2	m/s ²	0.000 - 3.999	-	0.800	
4.0	D 1D 1 0	ft/s ²	0.00 - 7.99	3.00	-	
A2	Decel Rate 2	m/s ²	0.000 - 3.999	-	0.800	
4.0		ft/s ³	0.0 - 29.9	8.0	-	
A2	Accel Jerk In 2	m/s ³	0.00 - 9.99	-	0.60	
4.0		ft/s ³	0.0 - 29.9	8.0	-	
A2	Accel Jerk Out 2	m/s ³	0.00 - 9.99	-	0.60	
		ft/s ³	0.0 – 29.9	8.0	-	
A2	Decel Jerk In 2	m/s ³	0.00 - 9.99	-	0.60	
		ft/s ³	0.0 – 29.9	8.0	-	
A2	Decel Jerk Out 2	m/s ³	0.00 - 9.99	-	0.60	
		ft/s ²	0.00 - 7.99	3.00	-	
A2	Accel Rate 3	m/s ²	0.000 - 3.999	-	0.800	
		ft/s ²	0.00 - 7.99	3.00	-	
A2	Decel Rate 3	m/s ²	0.000 - 3.999	-	0.800	
		ft/s ³	0.0 - 29.9	8.0	-	
A2	Accel Jerk In 3	m/s ³	0.00 - 9.99	-	0.60	
		ft/s ³	0.0 - 29.9	8.0	-	
A2	Accel Jerk Out 3	m/s ³	0.00 - 29.9	-	0.60	
		ft/s ³	0.00 - 9.99	8.0	-	
A2	Decel Jerk In 3	m/s ³	0.00 - 29.9	-	0.60	
		ft/s ³	0.00 - 9.99	8.0	-	
A2	Decel Jerk Out 3	m/s ³	0.00 - 29.9	-	0.60	

				Def	ault	
Submenu	Parameter	Units	Range	ENGLISH		Site Setting
				(U3)	(U3)	
A3	Multistep Ref A3 Subm				enu on pa	age 64.
A3	Speed Command 1	ft/min	-3000.0 - +3000.0	0.0	-	
		m/sec	-16.000 - +16.000	-	0.000	
А3	Speed Command 2	ft/min	-3000.0 - +3000.0	0.0	-	
		m/sec	-16.000 - +16.000	-	0.000	
A3	Speed Command 3	ft/min	-3000.0 - +3000.0	0.0	-	
	'	m/sec	-16.000 - +16.000	-	0.000	
А3	Speed Command 4	ft/min	-3000.0 - +3000.0	0.0	- 0.000	
		m/sec	-16.000 - +16.000	-	0.000	
А3	Speed Command 5	ft/min	-3000.0 - +3000.0	0.0	- 0.000	-
		m/sec	-16.000 - +16.000	-	0.000	
A3	Speed Command 6	ft/min	-3000.0 - +3000.0	0.0	0.000	-
		m/sec ft/min	-16.000 - +16.000	-	0.000	
А3	Speed Command 7		-3000.0 - +3000.0	0.0	0.000	-
		m/sec ft/min	-16.000 - +16.000 -3000.0 - +3000.0	0.0	0.000	
A3	Speed Command 8		-16.000 - +16.000	0.0	0.000	-
		m/sec ft/min	-3000.0 - +3000.0	0.0	0.000	
А3	Speed Command 9	m/sec	-16.000 - +16.000	0.0	0.000	-
		ft/min	-3000.0 - +3000.0	0.0	0.000	
A3	Speed Command 10	m/sec	-16.000 - +16.000	-	0.000	
		ft/min	-3000.0 - +3000.0	0.0	0.000	
A3	Speed Command 11	m/sec	-16.000 - +16.000	-	0.000	
		ft/min	-3000.0 - +3000.0	0.0	0.000	
A3	Speed Command 12	m/sec	-16.000 - +16.000	-	0.000	1
		ft/min	-3000.0 - +3000.0	0.0	-	
А3	Speed Command 13	m/sec	-16.000 - +16.000	-	0.000	
		ft/min	-3000.0 - +3000.0	0.0	0.000	
А3	Speed Command 14	m/sec	-16.000 - +16.000	-	0.000	
		ft/min	-3000.0 - +3000.0	0.0	-	
А3	Speed Command 15	m/sec	-16.000 - +16.000	-	0.000	
A4	Power Convert A4 Sub			ert A4 Su		n page 66.
A4	Input L-L Volts	volts	110 – 480		00	
A4	UV Alarm Level	%	50 – 99	90	80	
A4	UV Fault Level	%	50 – 99	80	70	
		+	2.5 – 16.0		l	
A4	PWM Frequency	kHz			0.0	
A4	Extern Reactance	%	0.0 – 10.0	0	.0	
A4	ID Reg Diff Gain	none	0.00 - 1.20	1.0	0 ^{i,iii}	
	· · · · · · · · · · · · · · · · · ·			0.0	00 "	
A4	ID Reg Prop Gain	none	0.15 – 3.00	0.3	0 ^{i,iii}	
		Tione	0.13 - 3.00	0.7	00 "	
A4 ⁱⁱ	ID Reg Intg Gain ⁱⁱ	none "	0.00 - 2.00 "		00 ⁱⁱ	
A 4	10 D = = D''' O :		0.00 4.00		0 ^{i,///}	
A4	IQ Reg Diff Gain	none	0.00 – 1.20		00 "	
					0 i,///	
A4	IQ Reg Prop Gain	none	0.15 - 3.00		00 "	
A4 ⁱⁱ	IQ Reg Intg Gain ⁱⁱ	none "	0.00 – 2.00 "	0.7	00"	
A4	Fine Tune Ofst ⁱⁱ	degs ⁱⁱ			00	
			-75.00 – 75.00 ⁱⁱ			
A4 ⁱⁱ	ID Ref Threshold "	none "	0.00 – 0.20 "	_)	
A4 ⁱⁱ	Flux Weaken Rate ⁱⁱ	none ⁱⁱ	0.000 - 1.000 ⁱⁱ	0.00	000 ⁱⁱ	

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessible through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP (U9)** Operation only

				Default	
Submenu	Parameter	Units	Range	ENGLISH METRIC (U3) (U3)	Site Setting
A4	Power Convert A4 Sub	menu continued.	••		1
A4 ⁱⁱ	Flux Weaken Lev ⁱⁱ	none ⁱⁱ	0.70 - 1.00 "	0.95 ⁱⁱ	
A4 ⁱⁱ	Align VIt Factor ii	none ⁱⁱ	0.05 – 1.99 ⁱⁱ	1.00 ⁱⁱ	
A4 ⁱⁱ	Brake Opn Flt Lv ⁱⁱ	% ⁱⁱ	0.0 – 20.0 ⁱⁱ	2 "	
A4 ⁱⁱⁱ	ID Dist Loop Gn ⁱⁱⁱ	none ⁱⁱⁱ	0.00 – 1.50 ⁱⁱⁱ	0.50 ⁱⁱⁱ	
A4 ⁱⁱⁱ	IQ Dist Loop Gn ⁱⁱⁱ	none ⁱⁱⁱ	0.00 - 1.50 ⁱⁱⁱ	0.30 "	
A4 ⁱⁱⁱ	ID Dist Loop Fc iii	sec ""	0.1 - 30.0 ⁱⁱⁱ	5.0 ⁱⁱⁱ	
A4 ⁱⁱⁱ	IQ Dist Loop Fc iii	sec ⁱⁱⁱ	0.1 – 30.0	5.0 ⁱⁱⁱ	1
A4 ⁱⁱⁱ	I Reg Cross Freq iii	% ⁱⁱⁱ	0.0 - 300.0 ⁱⁱⁱ	100.0 "	
A4 ⁱⁱⁱ	Dist Lp Off Freq ⁱⁱⁱ	Hz ⁱⁱⁱ	$0.0 - 99.9^{iii}$	60.0 ⁱⁱⁱ	
A4 ⁱⁱⁱ	Ilimit Integ Gn ⁱⁱⁱ	none ⁱⁱⁱ	$0.00 - 9.99^{iii}$	1.00'''	
A4 ⁱⁱⁱ	Hunt Prev Gain iii	none ⁱⁱⁱ	0.00 - 9.99	1.00	
A4 ⁱⁱⁱ	Hunt Prev Time iii	sec iii	0.000 - 4.00	0.200	
A4 iii		sec ⁱⁱⁱ	0.001 - 7.000 0 - 10 ⁱⁱⁱ	0.200 0 ⁱⁱⁱ	+
	Switching Delay iii	sec			
A4 ⁱⁱⁱ	Vc Correction iii	volts ⁱⁱⁱ	0.00 - 5.00 ⁱⁱⁱ	2.50 ⁱⁱⁱ	
A4	Load Sense Time	sec	0.00 – 1.50	0.00	
A4 ⁱⁱ	Autoalign Volts ⁱⁱ	% ⁱⁱ	5 -20 ⁱⁱ	10 "	
A4	Fan Off Delay	sec	0 – 999	60	
A5	Motor A5 Submenu –	For details see I			
			 4 pole dflt^{i,iii} 	4 pole dflt ^{i,iii}	
A5	Motor ID	none	 6 pole dflt^{i,iii} PM dfltⁱⁱ 	PM dflt ⁱⁱ	
A5	Rated Mtr Power	HP	1.0 - 500.0	0.0	
AS	Rated Will Power	kW	0.75 - 300.00	0.00	
A5	Rated Mtr Volts	volts	190.0 – 575.0	0.0	
A5 1,///	Rated Excit Freq 1,"	Hz ',///	5.0 – 400.0 ^{1,///}	0.0 1,///	
A5	Rated Motor Curr	amps	1.0 - 800.0	0.0	
A5	Motor Poles	none	2 – 128	4	
A5	Rated Mtr Speed	RPM	1.0 – 3000.0	0.0	
A5 ^{1,///}	% No Load Curr i,iii	% ^{i,ii}	10.0 – 80.0 i,///	Per ID i,///	
A5 ',///	Stator Leakage X 1,111	% 1,///	0.0 – 20.0 1,///	Per ID 1,111	
A5 1,///	Rotor Leakage X i,iii	% ^{1,iii}	0.0 – 20.0 1,111	Per ID I,III	
A5 i	Flux Sat Break	% ⁱ	0 – 100 i	75	
A5 1	Flux Sat Slope 1	PU Slope	0 - 200	0 1	
A5 ⁱⁱⁱ	Flux Sat Slope 2 i	PU Slope i volts iii	0 – 200 i	9.0 ⁱⁱ	
A5 "	Motor Min Volts III	Voits Hz ⁱⁱⁱ	0.1 – 100.0	9.0 1.0 ⁱⁱⁱ	+
A5 "	Motor Min Freq ⁱⁱⁱ Motor Mid Volts ⁱⁱⁱ	Note iii	0.1 – 10.0	28.0 "	
A5 "	Motor Mid Freg ⁱⁱⁱ	Volts ⁱⁱⁱ Hz ⁱⁱⁱ	0.1 – 575.0 ⁱⁱⁱ 0.1 – 40.0 ⁱⁱⁱ	3.0 "	
A5	Ovld Start Level	%	100 – 150	110	
A5 A5	Ovid Start Level Ovid Time Out		5.0 – 120.0		+
AO	Ovid Time Out	sec	5.0 - 120.0	60.0 1.5 ^{1,iii}	
A5	Stator Resist	%	0.0 – 20.0	7.0 "	
A5	Motor Iron Loss	%	0.0 – 15.0	0.5	1
A5	Motor Mech Loss	%	0.0 – 15.0	1.0	1
A5 "	D Axis Induct "	none"	0.50 – 100.00"	10" 30"	
A5 "	Q Axis Induct ⁱⁱ	none"	0.50 – 100.00 "	10" 30"	1
A5 "	Trq Const Scale "	none"	0.50 – 2.00 "	0.78"	1
A5 ⁱⁱ	Encoder Ang Ofst ⁱⁱ	none ⁱⁱ	0 – 35999 ⁱⁱ	30000 ⁱⁱ	

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessible through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP (U9)** Operation only

				Default		
Submenu	Parameter	Units	Range	ENGLISH METR		
C1	User Switches C1 Sub	monu For dot	ile soo Usor Swit	(U3) (U3)		
U1	Oser Switches CT Sub	Timenu – For dela		Tiles CT on pag	<i>je 10.</i>	
			 analog input 			
C1	Spd Command Src	none	multi-stepser mult step	MULTI-STEP		
			ser man stepserial			
			external tb			
C1	Run Command Src	none	- serial	EXTERNAL TE	3	
0.		110110	serial+extern			
04	Matan Datation		forward	FORWARD		
C1	Motor Rotation	none	reverse	FORWARD		
C1 ⁱⁱ	Encoder Select ⁱⁱ	none ⁱⁱ	– endat"	INCREMENTAL	ii	
C1	Encoder Select	none	– incremental ⁱⁱ	INCREMENTAL	=	
C1	Encoder Connect	none	forward	FORWARD		
01	Lilcoder Connect	Horie	reverse	TORWARD		
C1 i,ii	Encoder Fault i,ii	none ^{i,ii}	– disable ^{I,II}	ENABLE i,ii		
		110110	– enable ^{i,ii}	•		
C1	Cont Confirm Src	none	– none	NONE EXTE		
			external tb	NAL I	В	
C1 i	Fast Flux ⁱ	none	- disable '	DISABLE i		
			enable iexternal tb ',"			
C1 ^{i,ii}	HI/LO Gain Src ^{i,ii}	none ^{i,ii}	external toserial i,ii	INTERNAL i,ii		
Ci	ni/LO Gaill Sic	Tione	internal i,ii	INTERNAL		
			- disabled"			
C1 ⁱⁱ	I-Reg Inner Loop "	none ⁱⁱⁱ	enabled low ii	DISABLED"		
0,	Triog mile: 200p	110110	 enabled high ⁱⁱ 	570715225		
0 4 j ji	D 101 0 111	i ii	enabled high iinone ',"	NONEİÜ		
C1 ^{i,ii}	Ramped Stop Sel i,ii	none ^{i,ii}	ramp on stop i,ii	NONE i,ii		
			external tb ',"			
C1 ^{i,ii}	Ramp Down En Src ^{i,ii}	none ^{i,ii}	– run logic ^{i,ii}	EXTERNAL TB	i, <i>ii</i>	
			– serial ^{ĩ,ii}			
C1	S-Curve Abort	none	disable	DISABLE ENABI	F	
0.	C Carvo / Nort	110110	enable	DIO/IDEE EI I/IDE		
C1	DB Protection	none	– fault	FAULT		
		22	– alarm		-	
C1	Spd Ref Release	none	 reg release 	REG BRAK		
			brake pickedinternal	'	ע	
C1	Brake Pick Src	none	– internal – serial	INTERNAL		
			- none			
C1	Brake Pick Cnfm	none	internal time	NONE		
<i>-</i> .			external tb			
			– alarm			
C1	Motor Ovrld Sel	none	 flt immediate 	ALARM		
			 fault at stop 			
C1	Stopping Mode	none	immediate	IMMEDIATE		
J.	C.opping mode	1.5110	 ramp to stop 			
C1	Auto Stop	none	disable	DISABLE		
			- enable		DISABLE	
C1 ⁱⁱⁱ	Stall Test Ena ⁱⁱⁱ	none ⁱⁱⁱ	– enable ^{'''} – disable ^{'ii}	ENABLE iii		
			– disable – enable ^{III}			
C1 ⁱⁱⁱ	Stall Prev Ena ⁱⁱⁱ	none ⁱⁱⁱ	– enable – disable ⁱⁱⁱ	DISABLE ⁱⁱⁱ		
	1		– uisable	L		

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessible through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP (U9)** Operation only

					Defa	ault	
Submenu Parameter Units		Ra	Range			Site Setting	
					(U3)	(U3)	
C1	User Switches C1 Sub	omenu continue	ed				
			– none	– mode 2			
C1	Serial Mode	none	– mode 1	test	NO	NE	
01	Serial Wode	TIOTIC	– mode 2	– DCP3	140	NL.	
			– mode 3	– DCP4			
			imme	diate			
C1	Ser2 Flt Mode	none	– run re	emove	IMMED	DIATE	
			rescu	ie			
C1	Drv Fast Disable	nono	disab	le	DISA	DIE	
Ci	DIV Fast Disable	none	enabl	е	DISA	DLL	
			elev s	spd reg ',"			
C1 ^{i,ii}	Speed Reg Type i,ii	none ^{i,ii}	_ ni sna	ed rea i,ii	ELEV SP	DREG ^{i,ii}	
	1.		– exteri	nal reg ^{i,#}			
24	5		intern	nal			
C1	Brake Hold Src	none	serial		INTER	RNAL	
			disab				
C1	Brk Pick Flt Ena	none	enabl		DISA	BLE	
_			- disab				
C1	Brk Hold Flt Ena	none	enabl		DISA	BLE	
		Cmd Src ^{i,ii} none ^{i,ii}	- none	1,#	NONE i,ii		
C1 i,ii	Ext Torq Cmd Src i,ii		analo	g input ^{i,ii}			
O1			serial	1, <i>ii</i>			
			- exteri				
C1	Fault Reset Src	none	- serial		EXTERNAL TB		
01	l aut Neset Sie						
			automaticexternal tb				
C1	Overspd Test Src	none	- serial		EXTER	NAL TB	
			- none	1,//			
C1 i,ii	Pretorque Source i,ii	none ^{i,ii}		g input ^{i,ii}	NON	ı⊏ i, <i>ii</i>	
Ci	Freitique Source	Hone	– analo – serial	ig iriput i,#	INON	IL	
			- Serial	tched 1,11			
C1 i,ii	Pretorque Latch i,ii	none ^{i,ii}			NOT LAT	CHED 1,11	
			latcheserial	30 1,#	-		
C1 ^{i,ii}	Ptorq Latch Clck i,ii	none ^{i,ii}	- seriai	nal tb ^{i,ii}	EXTERN	AL TB ^{i,ii}	
	-						
C1	Dir Confirm	none	disab		DISA	BLE	
			- enabl		1		
			– disab				
C1	Mains Dip Ena	none	– low m		DISA	BLE	
			– exteri				
			serial		1		
C1	Mlt-Spd to Dly 1-4	none	– none		NO	NE	
	, ,		mspd		1		
C1	Priority Msg	none	– enabl		ENA	BLE	
	1, -3		disab		ENABLE		
C1 ⁱⁱ	ARB Select ⁱⁱ	none ⁱⁱ	– enabi	le" . ii	DISA	BLE ⁱⁱ	
<i>-,</i>		1.3	– disab		1 2.0,		
	L		exteri				
C1	Drive Enable Src	none	serial		EXTER	NAL TB	
			serial	+extern			1

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessible through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP (U9)** Operation only

				Defa	ault	
Submenu	Parameter	Units	Range	ENGLISH (U3)		Site Setting
C2	Logic Inputs C2 Sub	menu – For detai	ls, see Logic Inpu	ıts C2 on p	age 94.	
C2	Logic Input 1	contact cfirm	pre-trq latch	DRIVE E	NABLE	
C2	Logic Input 2	- drive enable - extrn fault 1	quick stoprun	RUN	CONTCT CFIRM	
C2	Logic Input 3	extrn fault 2 extrn fault 3	run downrun up	FAULT RESET	RUN UP	
C2	Logic Input 4	extrn/flt 4	s-curve sel 0	UP/DWN	RUN DOWN	
C2	Logic Input 5	fault resetlow gain sel	s-curve sel 1ser2 insp ena	S-CURV	E SEL 0	
C2	Logic Input 6	mains dip mech brk hold	step ref b0step ref b1	STEP F	REF B0	
C2	Logic Input 7	 mech brk pick 	step ref b2	STEP F	REF B1	
C2	Logic Input 8	nc ctct cfirmno function	step ref b3trq ramp down	STEP F	REF B2	
C2	Logic Input 9	ospd test src	– up/dwn	EXTRN FAULT 1	FAULT RESET	
C3	Logic Outputs C3 St	ubmenu – For deta	ails, see Logic O	utputs C3 o	on page	96.
С3	Logic Output 1	alarmalarm+fltat mid speedauto brake	motor trq lim mtr overload no function not alarm	READY '	TO RUN	
C3	Logic Output 2	 brake alarm brake hold brake pick brk hold flt 	over curr fltoverspeed fltovertemp fltovervolt flt	RUN COM	IMANDED	
C3	Logic Output 3	brk igbt fltbrk pick fltcar going dwn	ovrtemp alarmphase faultramp down ena	MTR OVER- LOAD	ZERO SPEED	
C3	Logic Output 4	 car going up charge fault close contact contactor flt 	ready to runregen trq limrun commandedrun confirm	ENCOD	ER FLT	
C3	Relay Coil 1	 contactor it curr reg flt drv overload encoder flt 	speed devspeed dev lowspeed ref rls	FAULT	READY TO RUN	
C3	Relay Coil 2	ext fan enfan alarmfault	speed ref rel2speed reg rlsstltst active	SPEED REG RLS	BRAKE PICK	
C3	User LED	 flt reset out flux confirm fuse fault ground fault in low gain 	undervolt fltup to speeduv alarmzero speed	ALA	.RM	
C4	Analog Outputs C4	Submenu – For de	etails, see Analog	Outputs (C4 on pa	ge 99.
C4	Analog Output 1	 abs pos bin aux torq cmd bus voltage current out d-current ref dry overload 	 pretorque ref slip freq spd rg tq cmd speed command speed error speed feedbk 	SPEED REF	SPEED COM- MAND	
C4	Analog Output 2	flux current flux output flux ref flux voltage frequency out mtr overload no function power output	 speed ref tach rate cmd theta e torq current torq voltage torque output torque ref voltage out 	SPEED I	FEEDBK	

Sub menu	Parameter	Units				
D1	Elevator Data D1 Submenu					
D1	Speed Command	ft/min or m/s				
D1	Speed Reference	ft/min or m/s				
D1	Speed Feedback	ft/min or m/s				
D1	Encoder Speed	rpm				
D1 ^{i,ii}	Speed Error ^{i,ii}	ft/min or m/s i,ii				
D1 ^{i,ii}	Est Inertia i,ii	seconds ^{i,ii}				
D1	Logic Outputs	1 = true; 0 = false				
D1	Logic Inputs	1 = true; 0 = false				
D1	Rx Logic In	1 = true; 0 = false				
D1 ^{i,ii}	Start Logic i,ii	1 = true; 0 = false i,ii				
D1 ^{i,ii}	Rx Com Status i,ii	1 = true; 0 = false i,ii				
D1	Rx Error Count	none				
D1 ^{i,ii}	Pre-Torque Ref i,ii	% of rated torque i,ii				
D1 ^{i,ii}	Spd Reg Torq Cmd ^{i,ii}	% of rated torque i,ii				
D1 ^{i,ii}	Tach Rate Cmd i,ii	% of rated torque i,ii				
D1 ^{i,ii}	FF Torque Cmd i,ii	% of rated torque i,ii				
D1	Enc Position	none				
D1	Enc Revolutions	none				
D2	Power Data D2 Subr	nenu				
D2	DC Bus Voltage	Volts				
D2	Motor Current	Amps				
D2	Motor Voltage	Volts				
D2	Motor Frequency	Hz				
D2	Motor Torque	% rated torque				
D2 ⁱ	Est No Load Curr %	% i				
D2 ⁱ	Est Rated RPM ⁱ	Rpm ⁱ				
D2 ^{i,ii}	Torque Reference i,ii	% of rated torque ^{i,ii}				
D2 ⁱ	Flux Reference i	% ⁱ				
D2 ⁱ	Flux Output i	% ⁱ				
D2	% Motor Current	% rated current				
D2	Power Output	kW				
D2 ⁱⁱ	D-Curr Reference "	% ⁱⁱ				
D2 ^{i,iii}	Slip Frequency ^{i,iii}	Hz ^{i,iii}				
D2	Motor Overload	%				
D2	Drive Overload	%				
D2	Flux Current	%				
D2	Torque Current	% rated current				
D2	Flux Voltage	% rated volts				
D2	Torque Voltage	% rated volts				
D2	Base Impedance	Ohms				
D2 ⁱⁱ	Rated Excit Freq "	Hz ⁱⁱ				
D2 ⁱⁱ	Rotor Position "					
D2		Deg C				
D2	-	-				
<i>D2ⁱⁱ</i> D2		none ⁱⁱ				

Sub menu	Parameter	Site Setting	
U1	Password U1 Submenu		
U1	Enter password		
U1	New password		
U1	Password lockout		
U2	Hidden Items U2 Sub	menu	
U2	Hidden Items Enable		
U3	Units U3 Submenu		
U3	Units Selection		
U4	Ovrspeed Test U4 Su	ıbmenu	
U4	Overspeed Test		
U5	Restore Dflts U5 Sub	menu	
U5	Rst Mtr Dflts		
U5	Rst Drive Dflts		
U6	Drive Info U6 Subme	nu	
U6	Drive Version		
U6	Boot Version		
U6	Cube ID		
U6	Drive Type		
U7	Hex Monitor U7 Subr	nenu	
U7	Address		
U8	Language Sel U8 Sul	omenu	
U8	Language Select		
U9	Basics U9 Submenu		
U9	Drive Mode		
U10 ⁱⁱ	Rotor Align U10 Sul	bmenu"	
U10 ⁱⁱ	Alignment ⁱⁱ		
U10 ⁱⁱ	Begin Alignment ii		
U10 ⁱⁱ	Alignment Method ii		
U11	Time U11 Submenu		
U11	Year		
U11	Month		
U11	Day		
U11	Hour		
U11	Minute		
U11	Second		
U12 ⁱⁱ	AutoTune U12 Subr	menu ⁱⁱ	
U12 ⁱⁱ	Autotune Select ii		
F1	Active Faults F1 Submenu		
F2	Faults History F2 Submenu		
F3	Sorted History F3 Submenu		
F4	Reset Faults F4 Subr	menu	
F4	Rst Active Flts		
F4	Clr Flt Hist		

Parameter accessible through **CLOSED LOOP (U9)** only in Parameter accessible through **PM (U9)** only in Parameter accessible through **OPEN LOOP(U9)** only

Introduction

Drive Specifications

Ratings

- North American Horse Power ratings
 - 230 Volt AC input:

7.5, 10, 15, 20, 25, 30, and 40 HP

- 460 Volt AC input:

5, 7.5, 10, 15, 20, 25, 30, 40, 50, 60, and 75 HP

- European Horse Power ratings
 - 400 Volt AC input:

5, 5.5, 7.5, 10, 15, 20, 25, 30, 40, 50, and 60HP

- 150% of continuous current rating (general purpose rating) for 60 seconds
- 250% of continuous current rating (general purpose rating) for 5 seconds

Performance Features

Control Method:

Digital flux vector, Space Vector PWM (1/3 less switching loss then Sine coded)

- Speed Command Sources: Serial channel; Analog channel; and Multi-step command
- Speed Control:

Range: 0 to rated speed Accuracy: ±0.02%

- Speed Reference Resolution Multi-step reference: 0.1ft/min / 0.001m/s Analog reference: 0.05%
- Speed Reference Signal: -10V to +10V
- Four distinctive programmable S-curves with: adjustable accel / decel rates and adjustable jerk rates (accel/decel & leveling)
- Torque Limit: Setting range: 0 to 250% motoring/regeneration set independently
- Selectable Functions: Multi-step speed operation (16 steps max.) and S-curves accel / decel (4 selectable max.)
- Adaptive Tune: Adjusts motor parameters automatically by: calculating the percentage no load current and estimating the rated rpm
- Estimates Inertia: Calculates the inertia of the entire elevator for easy tuning of the speed regulator
- Functions Available: Configuration and tuning of the speed regulator; Specifying the input line and motor parameters; Monitoring various internal signals; Fault annunciation & Fault log viewing.

Input Power

 Voltage: 200 - 240 VAC, 3-phase, ± 10% 380 - 480 VAC, 3-phase, ± 10%

• Frequency: 48 - 63 Hz

• Line Impedance: 3% without choke 1% with choke

Nominal Voltage Levels:

230 & 460 VAC, 3-phase, 60/50 Hz

Output Power

Voltage: 0 - Input Voltage
 Frequency: 0 - 120 Hz
 Carrier Frequency: 2.5 kHz - 16 kHz

Motor Control

• Induction: Closed Loop

Induction: Open Loop

Permanent Magnet: Incremental

 Permanent Magnet: Endat (requires kit HPV9-ENDAT)

Digital Inputs

Nine (9) programmable opto-isolated logic inputs. Voltage:

ON State:

Sinking Operation (High True): 18-26.4 Volts Sourcing Operation (Low True): 0-3.5 Volts OFF State:

Sinking Operation (High True): 0-4.5 Volts Sourcing Operation (Low True): 22-26.4 Volts

Off state leakage current: 1mA

On state leakage current (nominal): 5.5mA

Scan Rate: 2 msec.Update Rate: 4 msec.

Digital Outputs

Two (2) programmable Form-C relays.

 Relay 1&2: 2A at 30VDC / 250VAC resistive (inductive load)

• Update Rate: 2 msec.

Four (4) programmable opto-isolated open collectors.

Voltage: 50 Volts DC (max.)

Capacity: ≤ 150 mAUpdate Rate: 2 msec.

Analog Inputs

Two (2) differential inputs.

Voltage: ± 10 Volts DCChannel 1: Speed Command

Channel 2: Pre Torque Command or

Torque Feed Forward Command

Resolution: 10 Bit plus signSoftware gain and offset available

• Update Rate: 2 msec.

Analog Outputs

Two (2) programmable differential outputs.

Voltage: ± 10 Volts DC

• Capacity: 10 mA

Resolution: 10 Bit, 5msec time constant

Update Rate: 2 msec

Encoder Feedback

Supply Voltage: 12VDC or 5VDC*
 * see Incremental encoder Voltage
 Selection on page 28

Capacity: 200mA or 400mA
PPR: 600 - 10,000 (max)
Maximum Frequency: 300 kHz
Input: 2 channel quadrature

(A, /A, B, /B) Zero marker (Z,/Z) Endat (PM, option)

Design Features

- DC Bus Choke: Connections for optional external DC Bus Choke
- Internal Dynamic Brake IGBT: Connections for external Dynamic Brake Resistor
- Serial Channel: Optically isolated RS422 port

Protective Features

- Internal motor overload protection per UL/CSA
- Overspeed Fault
- Drive Overload Fault
- DC Bus Overvoltage and Undervoltage Faults
- Overcurrent Fault
- Phase Overcurrent Fault
- · Open Phase Fault
- Overtemperature Fault
- Encoder Malfunction Fault

Environmental

- Operating ambient air temperature range -10°C (14°F) to 45°C (110°F)
- Altitude 1000m (3300 ft) without derating
- Relative humidity 95% (non-condensing)
- Environment: protected from corrosive gases; conductive dust
- Vibration: displacement of 0.032mm < 57Hz; peak acceleration 0.5g > 57Hz
- Storage of -20°C 65°C
- Capacitors must be reformed after storage of more than 1 year.

Standards and Reliability

- CSA listed
- CE
- Surface mount devices

Drive Derating

Altitude Derating

Control ratings apply to 1000 meters (3300 feet) altitude without derating. For installations at higher altitudes, derate both the continuous and peak current levels 5% for each 300 m (1000 ft) above 1000 m (3300 ft).

Derating for Carrier Frequency

Control ratings apply for carrier frequencies up to and including 10 kHz. See Carrier Frequency Ratings on page 187.

Derating for Single Phase Input Power

For single-phase input power, derate both the continuous and peak current levels by 60%. For single phase rating table, see Single Phase Ratings on page 186.

Drive Model Number

The HPV 900 Series 2 nameplate contains a fifteen-digit model number, which provides complete identification of the drive. Figure 1 details the model number.

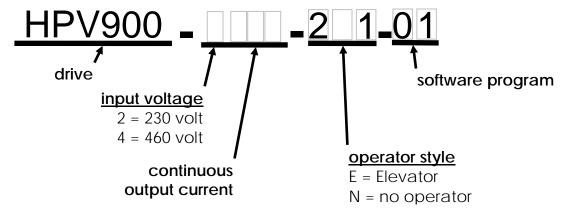


Figure 1: Model Number

General Start-Up Procedure

The following is a recommended start-up procedure:

- 1. The HPV 900 Series 2 is thoroughly tested at the factory. Verify the drive has been installed without shipping and installation damage.
- 2. Review the HPV 900 Series 2 technical manual, shipped with the drive.
- Verify the proper drive model numbers and voltage ratings as specified on the purchase order.
- 4. Verify the drive has been installed in accordance with the guidelines detailed below:

Location of the HPV 900 Series 2 is important for proper operation of the drive and normal life expectancy. The installation should comply with the following:

- DO NOT mount in direct sunlight, rain or extreme (condensing) humidity.
- DO NOT mount where corrosive gases or liquids are present.
- AVOID exposure to vibration, airborne dust or metallic particles.
- DO NOT allow the ambient temperature around the control to exceed the ambient temperature listed in the specification.
- Mount control vertically using mounting holes provided by Magnetek.
- Allow at least 7cm (2.5 in) clearance above and at least 7 to 13 cm (2.5 to 5 in) clearance below the unit.
- Allow at least 3 cm (1 in) clearance to either side of the drive.
- Separate grounded metal conduit is required for input, output and control wiring.

The unit should be installed in an open ventilated area where free air can be circulated around the control. The installation should comply with the following:

- When necessary, the cooling should be provided by using filtered air.
- If the cooling air coming inside the control cabinet contains airborne dust, filter the incoming air as required and clean the cooling surface of the HPV 900 Series 2 regularly using compressed air and a brush. An unclean heatsink operates at an efficiency less than that of cooling design specifications. Therefore, drive may fault on thermal protection if heatsink is not cleaned periodically.

- 5. Inspect the security of the supply line power, ground connections, and all control circuit connections. Ensure that the main circuit input/output precautions are observed. Also, ensure that the control circuit precautions are observed.
 Observe the following precautions:
- Use 600V vinyl sheathed wire or equivalent. Wire size should be determined considering voltage drop of leads.
- Never connect main AC power to the output terminals: U, V, and W.
- Never allow wire leads to contact metal surfaces. Short circuit may result.
- SIZE OF WIRE MUST BE SUITABLE FOR CLASS I CIRCUITS.
- Motor lead length should not exceed 45m (150 ft) and motor wiring should be run in a separate conduit from the power wiring. If lead length must exceed this distance, contact Magnetek for proper installation procedures.
- Use UL/CSA certified connectors sized for the selected wire gauge. Install connectors using the specified crimping tools specified by the connector manufacturer.
- Use twisted shielded or twisted-pair shielded wire for control and signal circuit leads. The shield sheath MUST be connected at the HPV 900 Series 2 ONLY. The other end should be dressed neatly and left unconnected (floating).
- Control wire size should be determined considering the voltage drops of the leads.
- Control wire lead length should not exceed 45m (150 ft). Signal leads and feedback leads should be run in separate conduits from power and motor wiring.
- 6. Verify that the input voltage matches the drive's rating.
- 7. Verify that the motor is wired for the application voltage and amperage.
- Tighten all of the three-phase power and ground connections. Check that all control and signal terminations are also tight. As they sometimes come loose during the shipment process.

Pre-Power Check

CAUTION: TO PREVENT DAMAGE TO THE DRIVE. THE FOLLOWING CHECKS MUST BE PERFORMED BEFORE APPLYING THE INPUT POWER.

- Inspect all equipment for signs of damage, loose connections, or other defects.
- Ensure the three-phase line voltage is within ±10% of the nominal input voltage. Also verify the frequency (50 or 60 Hz) is correct for the elevator control system.
- Remove all shipping devices.
- Ensure all electrical connections are secure.
- Ensure that all transformers are connected for proper voltage.

IMPORTANT: Double-check all the power wires and motor wires (R, S, T, U, V, & W) to make sure that they are securely tightened down to their respective lugs (loose wire connections may cause problems at any time).

IMPORTANT: Insure the incoming line supply IS CONNECTED to the drive INPUT TERMINALS R, S, & T and NOT to the output motor terminals U, V, & W.

- Insure the DC Choke link is in place, if a DC choke is NOT used.
- 10. Insure a Dynamic Braking Resistor is connected to the drive, see page 172
- 11. Measure and verify transformer primary and secondary volts
- 12. Check for balanced Vac from phase to ground.
- Verify the accuracy of the drive's input lineto-line voltage in parameter INPUT L-L VOLTS (A4)

NOTE: The INPUT L-L VOLTS (A4) parameter helps to determine the DC bus undervoltage alarm/fault level.

Real Time Clock Setup

The HPV900 Series 2 operator comes with a real time clock and battery. As part of the startup, it is beneficial to the user to setup the real time clock by following the instructions below:

- With power removed from the drive, remove the operator from the drive by unplugging the connector.
- 2. As seen in Figure 2, set the power switch to "1". Plug operator back into drive.

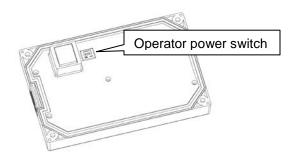


Figure 2: Back of Operator

- Turn on power to the drive and set the following parameters in the Time, U11 submenu:
 - Year
 - Month
 - Day
 - Hour (use 24 hour clock)
 - Minute
 - Second
- 4. These number(s) / date(s) will be automatically stored, however, after setting these value in the U11 submenu, it may be viewed on the top of the display or logged into fault history when a fault occurs and the U11 parameter will reset back to zero.

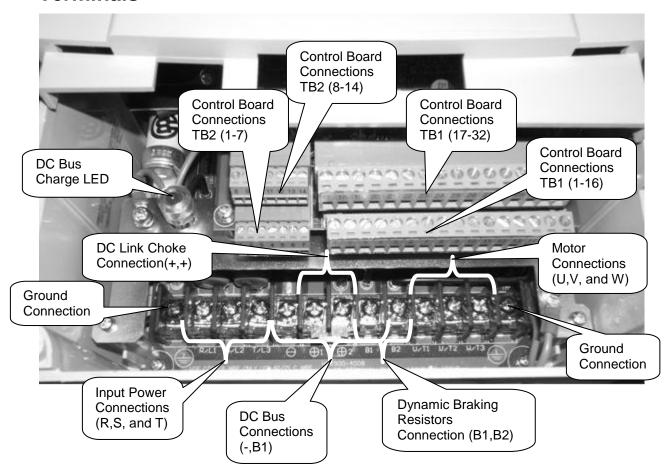
This completes the recommended general start-up procedure. For Close-Loop Adaptive Tune procedure, please see page 135. For Open Loop Start-Up Procedure, please see page 150.

CSA Warnings

The following are written warnings located on the drive chassis. They appear in both English and French. In this section, these warnings appear in English only.

Caution—Risk of Electric Shock:

Capacitive voltages above 50V may remain for 5 minutes after power is disconnected


Caution—Risk of Electric Shock: More than one live circuit: See diagram

The following written warning is also located on the drive chassis.

This device provides motor overload protection in accordance with NEC and CEC requirements. This device is factory configured to stop the motor from a motor overload trip. See instruction manual for options.

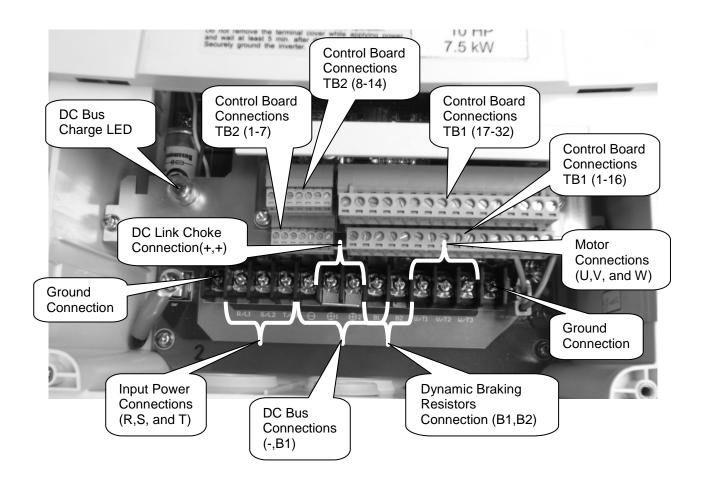
WARNING: Separate Motor Overcurrent Protection is required to be provided in accordance with the Canadian Electrical Code, Part 1, and NEC.

Terminals

Remember when servicing the HPV900 Series 2: Hazardous voltages may exist in the drive circuits even with drive circuit breaker in off position.

IMPORTANT: Use extreme caution: Do not touch any circuit board, the drive, or motor electrical connections without making sure that the unit is properly grounded and that no high voltage is present.

NEVER attempt maintenance unless:


The incoming three phase power (460 or 230VAC) is disconnected and locked out.

Also, ensure the DC Bus charge light is out.

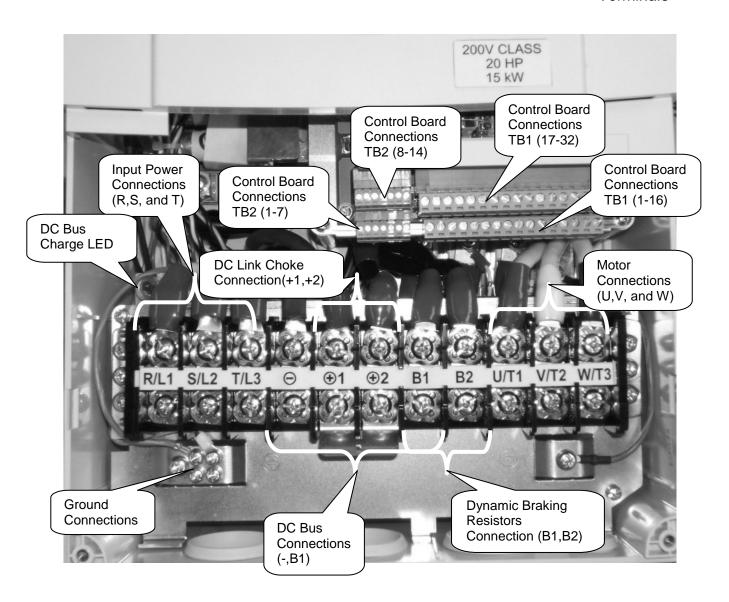
Even with the light out, we recommend that you use a voltmeter between (N) and (P) to verify that no voltage is present.

CAUTION: Before continuing, ensure the DC Bus Charge LED is not illuminated.

Figure 3: Terminal Connections (Frame 1)

IMPORTANT: Use extreme caution: Do not touch any circuit board, the drive, or motor electrical connections without making sure that the unit is properly grounded and that no high voltage is present.

NEVER attempt maintenance unless:


The incoming three phase power (460 or 230VAC) is disconnected and locked out.

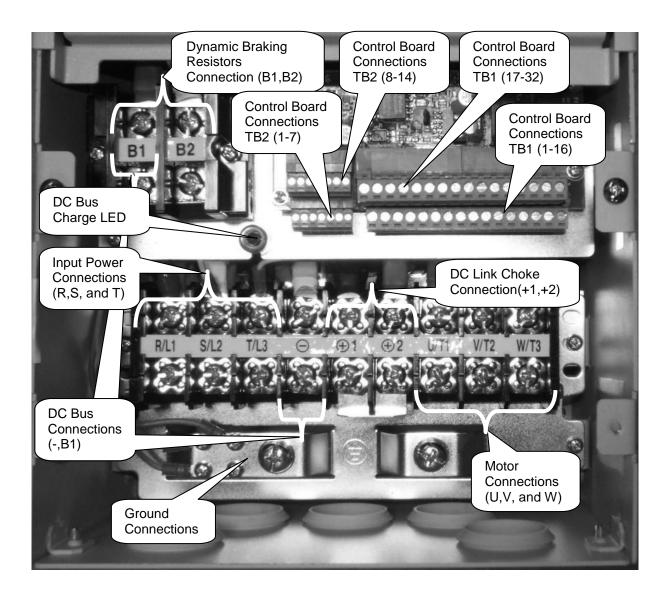
Also, ensure the DC Bus charge light is out.

Even with the light out, we recommend that you use a voltmeter between (N) and (P) to verify that no voltage is present.

CAUTION: Before continuing, ensure the DC Bus Charge LED is not illuminated.

Figure 4: Terminal Connections (Frame 2)

IMPORTANT: Use extreme caution: Do not touch any circuit board, the drive, or motor electrical connections without making sure that the unit is properly grounded and that no high voltage is present.


NEVER attempt maintenance unless:

The incoming three phase power (460 or 230VAC) is disconnected and locked out. Also, ensure the DC Bus charge light is out.

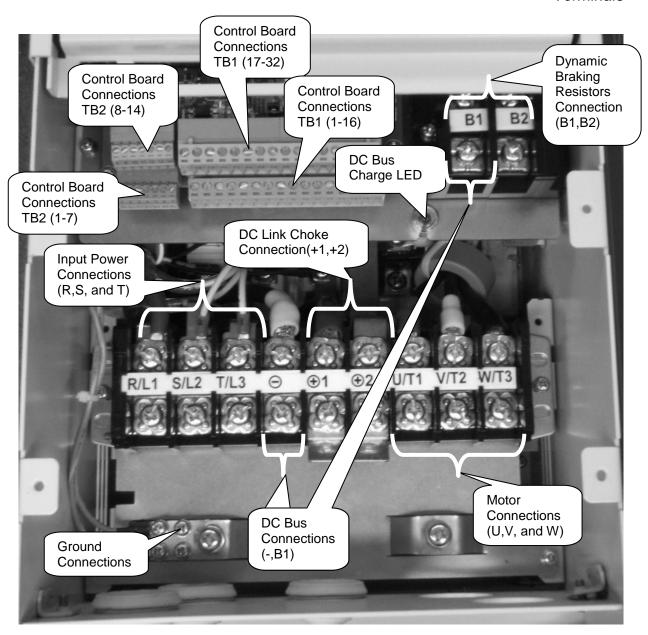
Even with the light out, we recommend that you use a voltmeter between (N) and (P) to verify that no voltage is present.

CAUTION: Before continuing, ensure the DC Bus Charge LED is not illuminated.

Figure 5: Terminal Connections (Frame 3)

IMPORTANT: Use extreme caution: Do not touch any circuit board, the drive, or motor electrical connections without making sure that the unit is properly grounded and that no high voltage is present.

NEVER attempt maintenance unless:


The incoming three phase power (460 or 230VAC) is disconnected and locked out.

Also, ensure the DC Bus charge light is out.

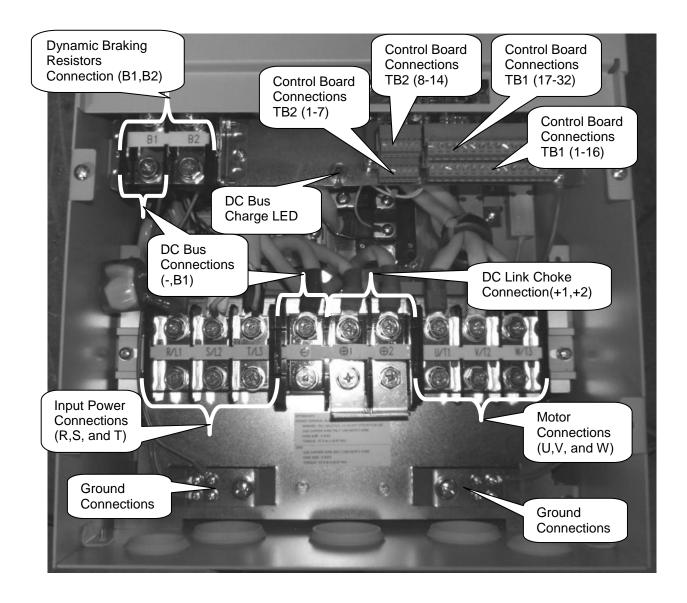
Even with the light out, we recommend that you use a voltmeter between (N) and (P) to verify that no voltage is present.

CAUTION: Before continuing, ensure the DC Bus Charge LED is not illuminated.

Figure 6: Terminal Connections (Frame 3.5)

IMPORTANT: Use extreme caution: Do not touch any circuit board, the drive, or motor electrical connections without making sure that the unit is properly grounded and that no high voltage is present.

NEVER attempt maintenance unless:


The incoming three phase power (460 or 230VAC) is disconnected and locked out.

Also, ensure the DC Bus charge light is out.

Even with the light out, we recommend that you use a voltmeter between (N) and (P) to verify that no voltage is present.

CAUTION: Before continuing, ensure the DC Bus Charge LED is not illuminated.

Figure 7: Terminal Connections (Frame 4)

IMPORTANT: Use extreme caution: Do not touch any circuit board, the drive, or motor electrical connections without making sure that the unit is properly grounded and that no high voltage is present.

NEVER attempt maintenance unless:

The incoming three phase power (460 or 230VAC) is disconnected and locked out.

Also, ensure the DC Bus charge light is out.

Even with the light out, we recommend that you use a voltmeter between (N) and (P) to verify that no voltage is present.

CAUTION: Before continuing, ensure the DC Bus Charge LED is not illuminated.

Figure 8: Terminal Connections (Frame 5)

Interconnections

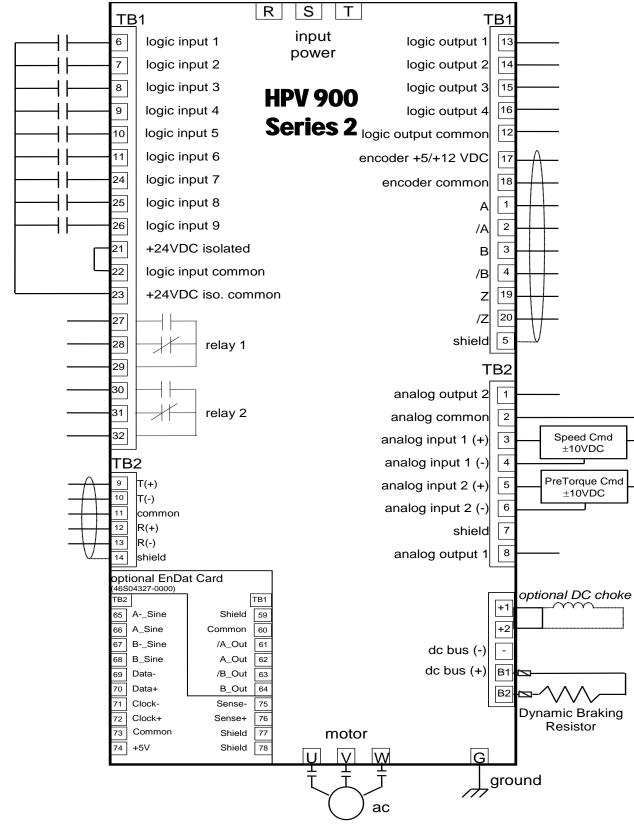


Figure 9: Interconnection Diagram

Logic Inputs

The HPV 900 Series 2's nine programmable logic inputs are opto-isolated. The inputs become "true" by closing contacts or switches between the logic input terminal and voltage source common (or voltage source). The voltage supply for the logic inputs is 24VDC.

The choices for the voltage source common (or voltage source) depend on if the user is using an external voltage supply or using the internal voltage supply.

Figure 10 shows the connection for using the internal voltage supply. And in this case, the voltage source common is TB1-21 (+24VDC isolated).

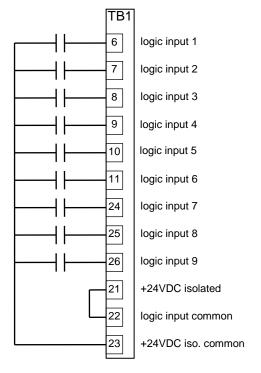


Figure 10: Logic Inputs Sourcing Operation (Low True - Internal Supply)

Figure 11 shows the connection for using the internal voltage supply. And in this case, the voltage source common is TB1-23 (+24VDC isolated common).

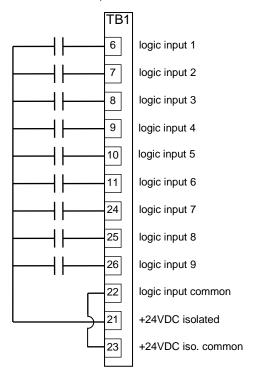


Figure 11: Logic Inputs Sinking Operation (High True - Internal Supply)

Figure 12 shows the connection for using the external voltage supply. And in this case the voltage source common is positive side of the external voltage supply.

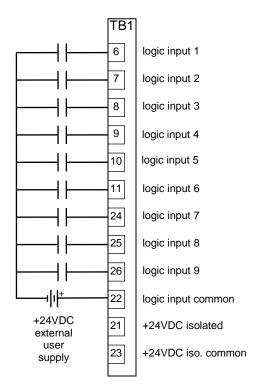


Figure 12: Logic Inputs Sourcing Operation (Low True - External Supply)

Figure 13 shows the connection for using the external voltage supply. And in this case the voltage source common is negative side of the external voltage supply.

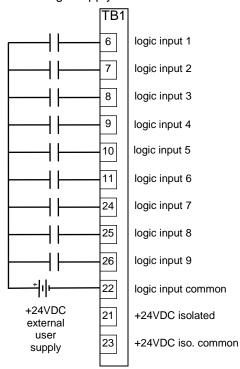


Figure 13: Logic Inputs Sinking Operation (High True - External Supply)

The switches or contacts used to operate the logic inputs may be replaced by logic outputs from a PLC or car controller. If the outputs are open collector, the ground is needs to be connected to the proper voltage source common.

For more information on the programming the logic inputs, see Logic Inputs C2 on page 94.

T	Logic Input Connections		
Terminal Description	HPV900 Series 2	HPV900	HPV600
Logic Input 1	TB1-6	TB1-1	TB1-16
Logic Input 2	TB1-7	TB1-2	TB1-17
Logic Input 3	TB1-8	TB1-3	TB1-18
Logic Input 4	TB1-9	TB1-4	TB1-19
Logic Input 5	TB1-10	TB1-5	TB1-20
Logic Input 6	TB1-11	TB1-6	TB1-21
Logic Input 7	TB1-24	TB1-7	TB1-22
Logic Input 8	TB1-25	TB1-8	TB1-23
Logic Input 9	TB1-26	TB1-9	TB1-24
Logic Input Common	TB1-22	TB1-10	TB1-15
+24VDC isolated	TB1-21	TB1-11	TB1-13
+24VDC iso.	TB1-23	TB1-12	TB1-14

Table 2: Logic Input Connections

Logic Outputs

The HPV 900 Series 2's four programmable logic outputs are opto-isolated, open collector. The outputs are normally open and can withstand an applied maximum voltage of 50VDC. When the output becomes "true", the output closes and is capable of sinking up to 150mA between the logic output terminal and the logic output common (TB1-24). Figure 14 shows the logic output terminals.

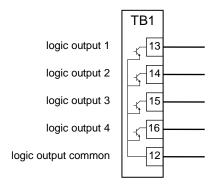


Figure 14: Logic Outputs

For more information on the programming the logic outputs, see section Logic Outputs C3 on page 96.

As a reference, please refer to the table below if replacing an HPV900 or HPV600 with the HPV900 Series 2 drive.

Tamainal	Logic Output Connections		
Terminal Description	HPV900 Series 2	HPV900	HPV600
Logic Output 1	TB1-13	TB1-14	TB1-9
Logic Output 2	TB1-14	TB1-15	TB1-10
Logic Output 3	TB1-15	TB1-16	TB1-12
Logic Output 4	TB1-16	TB1-17	TB1-13
Logic Output Common	TB1-12	TB1-18	TB1-8

Table 3: Logic Output Connections

Relay Outputs

The HPV 900 Series 2's two programmable relay logic outputs are Form-C relays. The have both normally open and normally closed contacts.

The specifications for the relays are as follows:

 2A at 30VDC / 250VAC resistive (inductive load)

For more on the relay specifications, see page 190.

Figure 15 shows the logic output terminals.

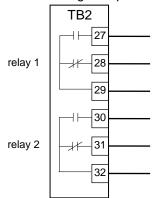


Figure 15: Relay Outputs

For more information on the programming the relay outputs, see Logic Outputs C3 on page 96.

Tamainal	Relay Output Connections		
Terminal Description	HPV900 Series 2	HPV900	HPV600
Relay 1 N.O. Contact	TB1-27	TB2-51	TB2-51
Relay 1 Common	TB1-29	TB2-52	TB2-52
Relay 1 N.C. Contact	TB1-28	TB2-53	TB2-53
Relay 2 N.O. Contact	TB1-30	TB2-54	TB2-54
Relay 2 Common	TB1-32	TB2-55	TB2-55
Relay 2 N.C. Contact	TB1-31	TB2-56	TB2-56

Table 4: Relay Output Connections

Encoder

The HPV 900 Series 2 has connections for an incremental two-channel quadrature encoder. The drive's encoder circuitry incorporates resolution multiplication and complimentary outputs.

Incremental Encoder Wiring

Use twisted pair cable with shield tied to chassis ground at drive end, in order to minimize magnetic and electrostatic pick-up current and to minimize radiated and conducted noise.

Reasonable care must be taken when connecting and routing power and signal wiring. Radiated noise from nearby relays (relay coils should have R/C suppressors), transformers, other electronic drives, etc. may be induced into the signal lines causing undesired signal pulses.

Power leads and signal lines must be routed separately. Signal lines should be shielded. twisted and routed in separate conduits or harnesses spaced at least 12 inches apart from power wiring. This protects the cable from physical damage while providing a degree of electrical isolation. Also, do not run cable in close proximity to other conductors, which carry current to heavy loads such as motors, motor starters, contactors, or solenoids. Doing so could result in electrical transients in the encoder cable, which can cause undesired signal pulses. Power leads are defined as the transformer primary and secondary leads, motor leads and any 120 VAC or above control wiring for relays, fans, thermal protectors, etc.

Continuity of wires and shields should be maintained from the encoder through to the controller avoiding the use of terminals in a junction box. The shield and shield drain wires must be insulated from other objects. This helps to minimize radiated & induced noise problems and magnetically induced ground loops.

Always use an encoder with complementary output signals. Connect with twisted-pair shielded wire so that wire-induced currents will self-cancel.

NOTE: DO NOT ground the encoder through both the machine and the cable wiring. Connect the shield at the receiver device only. If the shield is connected at both ends, noise currents will flow through the shield and degraded performance will result.

HPV 900 Series 2 Incremental Encoder Specifications

The HPV 900 Series 2 requires the use of an encoder coupled to the motor shaft. The encoder power can be either a 5VDC or 12VDC supply. The capacity of each power supply is the following:

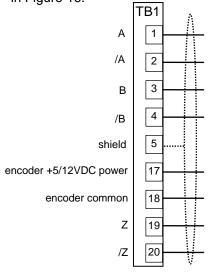
supply voltage: 12VDC

200mA capacity

supply voltage: 5VDC

400mA capacity

The HPV 900 Series 2 can accept encoder pulses of:


- 500 to 10,000 pulses per revolution (ppr)
- a maximum frequency of 300kHz

IMPORTANT

Motor phasing should match the encoder feedback phasing. If the phasing is not correct, the motor will not accelerate up to speed. It will typically oscillate back and forth at zero speed, and the current will be at the torque limit. Swapping A and /A or switching two motor phases should correct this situation.

The encoder pulses per revolution must by entered in the ENCODER PULSES parameter, see *Drive A1 Submenu on page 42*.

The encoder connection terminals are shown in Figure 16.

Figure 16: Encoder Connections

Tamainal	Incremental Encoder Connections		
Terminal Description	HPV900 Series 2	HPV900	HPV600 option card
Α	TB1-1	TB1-21	TB2-63
/A	TB1-2	TB1-20	TB2-62
В	TB1-3	TB1-23	TB2-65
/B	TB1-4	TB1-22	TB2-64
Z	TB1-19	N/A	N/A
/Z	TB1-20	N/A	N/A
encoder +5 /+12VDC	TB1-17	TB1-25 TB1-24	TB2-67 TB2-66
encdr common	TB1-18	TB1-19	TB2-61
shield	TB1-5	TB1-26	TB2-68

Table 5: Encoder Connections

Incremental encoder Voltage Selection

The HPV 900 Series 2 drive allows for either an isolated +5VDC power supply or an isolated +12VDC power supply. The drive is defaulted with the +5VDC power supply. If the +12VDC power supply is desired, change the jumper as seen in the figure below from +5V position to

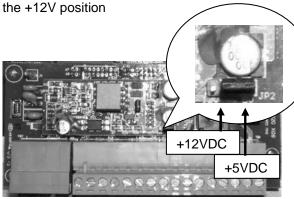


Figure 17: Encoder Voltage Selection

EnDat Encoder Connections

The HPV 900 PM has an absolute encoder option card that reads absolute rotor position data and converts analog incremental (sine/cosine) signals into standard quadrature feedback signals. The drive's encoder circuitry incorporates resolution multiplication (8x). The output quadrature signals are available for use by the car controller.

Encoder Wiring

Use twisted pair shielded cable with shield tied to chassis ground at drive end using the

ground clamp provided, in order to minimize magnetic and electrostatic pick-up current and to minimize radiated and conducted noise.

Reasonable care must be taken when connecting and routing power and signal wiring. Radiated noise from nearby relays (relay coils should have R/C suppressors), transformers, other electronic drives, etc. may be induced into the signal lines causing undesired signal pulses.

Power leads and signal lines must be routed separately. Signal lines should be shielded and routed in separate conduits or harnesses spaced at least 12 inches apart from power wiring. This protects the cable from physical damage while providing a degree of electrical isolation. Also, do not run cable in close proximity to other conductors, which carry current to heavy loads such as motors, motor starters, contactors, or solenoids. Doing so could result in electrical transients in the encoder cable, which can cause undesired signal pulses. Power leads are defined as the transformer primary and secondary leads, motor leads and any 120 VAC or above control wiring for relays, fans, thermal protectors, etc.

Magnetek recommends using a 17-pin circular (M23) flange socket paired with a Heidenhain 309778-xx cable. Also acceptable are: encoder pigtail cable up to 1m in length fitted with M23 (17-pin male) coupling (291698-25, 291698-26, or 291698-27) and paired with a Heidenhain 309778-xx cable. Maximum length of the encoder cable (including a pigtail cable, if applicable) is 15 meters (50').

NOTE: In cases where a pigtail cable is being used, Magnetek recommends paralleling the power and the power sense connections. For connection diagram, see Figure 18.

Continuity of wires and shields should be maintained from the encoder through to the controller avoiding the use of terminals in a junction box. The shield and shield drain wires must be insulated from other objects. This helps to minimize radiated & induced noise problems and magnetically induced ground loops.

HPV 900 S2 PM EnDat Encoder Specifications

The HPV 900 S2 PM requires the use of an encoder coupled to the motor shaft. The absolute encoder option board supports sine/cosine encoders (also called servo encoders) with the 13-bit single turn EnDat 2.1 or 2.2 data interface with incremental signals

(EnDat01). The following Heidenhain encoders can be used: ECN113, ECN1313, ECN413, and ROC 413. For high pole count gearless motors use encoders with high incremental line count (2048).

IMPORTANT

Motor phasing should match the encoder feedback phasing for both absolute and incremental feedback. The proper phasing can be easily established through open loop rotor alignment procedure. Refer to the open loop alignment section for more details. Swapping only incremental leads may be insufficient to establish proper phasing.

The encoder pulses per revolution must be entered in the ENCODER PULSES (A1) parameter from the encoder nameplate. Encoder signal connections with Heidenhain 309778-xx cable are shown below.

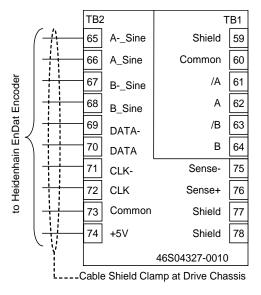


Figure 18: EnDat Encoder Option Card

The customer connections are 8 times the encoder nameplate (i.e. 16384 for a 2048 encoder). The HPV 900 S2 PM EnDat automatically accounts for the multiplication of 8 and the encoder nameplate data is required in A1.

Analog Inputs

The HPV 900 Series 2 has two non-programmable differential analog input channels.

- Analog input channel 1 is reserved for the speed command (if used).
- Analog input channel 2 is reserved for the pre-torque command (if used).

The analog input channels are bipolar and have a voltage range of $\pm 10 \text{VDC}$.

Available with the analog channels is multiplier gain parameters (SPD COMMAND MULT and PRE TORQUE MULT) and bias parameters (SPD COMMAND BIAS and PRE TORQUE BIAS). These parameters are used to scale the user's analog command to the proper range for the drive software. The formula below shows the scaling effects of these two parameters.

$$\begin{pmatrix} \text{analog} & \text{signal} \\ \text{channel} & - & \text{BIAS} \\ \text{input} & \text{voltage} \end{pmatrix} \times \begin{array}{c} \text{MULT} = \\ \text{software} \\ \text{uses} \\ \end{pmatrix}$$

For more on the multiplier gain or bias parameters, see Drive A1 Submenu on page 42.

The scaling of the analog input signals follows:

- Speed Command
 - +10VDC = positive contract speed
 - -10VDC = negative contract speed
- Pre Torque Command
 - +10VDC = positive rated torque of motor
 - -10VDC = negative rated torque of motor

NOTE: The drive cannot recognize voltages outside of the ±10VDC on its analog input channels. Speed Signal

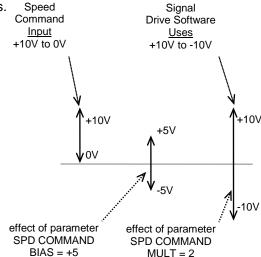


Figure 19: Analog Input Scaling

The HPV 900 Series 2 provides common mode noise rejection with the differential analog inputs. The connection of these two inputs is shown in Figure 20

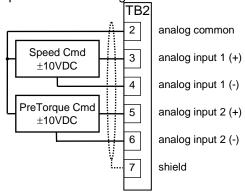


Figure 20: Analog Inputs (Differential)

Figure 21 shows the connection for the analog inputs, if they are configured to be single ended. In this configuration, the HPV 900 Series 2 noise immunity circuitry is not in effect.

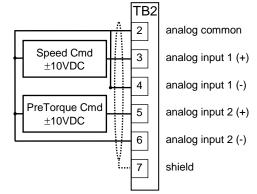


Figure 21: Analog Inputs (Single Ended)

As a reference, please refer to the table below if replacing an HPV900 or HPV600 with the HPV900 Series 2 drive.

Tarminal	Analog Input Connections		
Terminal Description	HPV900 Series 2	HPV900	HPV600
analog common	TB2-2	TB1-29	TB1-2
analog input 1 (+)	TB2-3	TB1-28	TB1-3
analog input 1 (-)	TB2-4	TB1-27	TB1-4
analog input 2 (+)	TB2-5	TB1-31	N/A
analog input 2 (-)	TB2-6	TB1-30	N/A
shield	TB2-7	TB1-32	TB1-1

Table 6: Analog Input Connections

Analog Outputs

The HPV 900 Series 2 has two programmable differential analog output channels. The two analog output channels were designed for diagnostic help. For more information on programming the analog output channels, see Analog Outputs C4 Submenu on page 99. The analog output channels are bipolar and have a voltage range of ±10VDC. Available with the analog channels is multiplier gain parameters (ANA 1 OUT GAIN and ANA 2 OUT GAIN) and a bias or offset parameters (ANA 1 OUT OFFSET and ANA 2 OUT OFFSET). These parameters are used to scale the user's analog outputs to the proper range for the drive software. The formula below shows the scaling effects of these two parameters.

The scaling of the analog output signals is shown below.

The connection of these two inputs is shown in Figure 22.

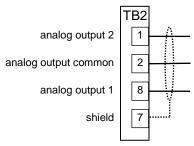


Figure 22: Analog Outputs

	Analog Output Connections		
Terminal Description	HPV900 Series 2	HPV900	HPV600 option card
analog common	TB2-2	TB1-34	AC
analog output 1	TB2-8	TB1-33	A1
analog output 2	TB2-1	TB1-35	A2
shield	TB2-7	TB1-36	N/A

Table 7: Analog OutputConnections

Electrical Installation

Input Power Connections

Terminals: R, S, and T provide connections for AC input power.

Motor Lead Connections

U, V, & W terminals provide connection points for the motor leads.

DC Choke Connections

Terminals +1 and +2 provide connection points for a user supplied DC choke. A two position removable link is provided to the pair of terminals. With this link, the drive can be operated without the use of a DC choke. All HPV 900 Series 2 drives contain internal DC reactors.

Brake Resistor Connections

Terminals B1 and B2 provide connection points for an external user supplied braking resistor. Connect the external brake resistor

between terminals B1 and B2. Terminals: + and - are the positive and negative rails of the DC bus (see Figure 23, Figure 24, Figure 25, and Figure 26).

Equipment Grounding

A terminal block is provided for the required user supplied equipment grounding.

Control Circuit

Observe the following precautions:

Refer to Figure 9 on page 23 for completing encoder connections; analog inputs; logic inputs; and logic outputs at the HPV 900 Series 2's Control Board.

IMPORTANT

Parameter adjustments will have to be made for the specific analog input, logic inputs, and logic outputs to be used for the installation.

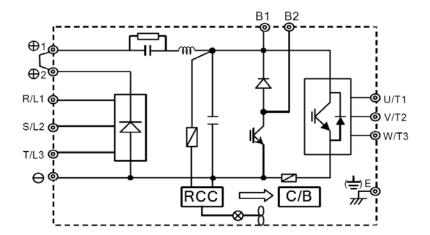


Figure 23: Main Circuit Block Diagram (230VAC 1-20HP cube)

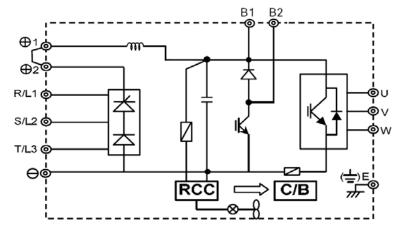


Figure 24: Main Circuit Block Diagram(230vac 25-60HP)

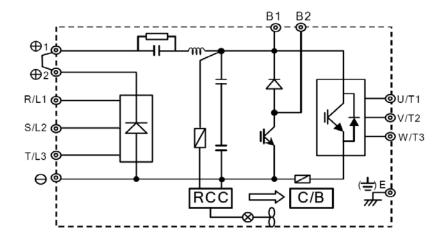


Figure 25: Main Circuit Block Diagram (460VAC 1-20HP)

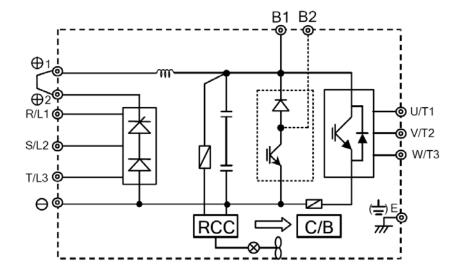
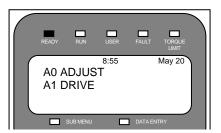


Figure 26: Main Circuit Block Diagram (460VAC 25-75HP)

Parameters


Parameter Introduction

This section describes the parameter menu structure; how to navigate this menu structure via the HPV 900 Series 2 digital operator; and a detailed description of each parameter.

Parameters are grouped under six major menus:

- ADJUST A0
- CONFIGURE C0
- UTILITY U0
- FAULTS F0
- DISPLAY 1 D0
- DISPLAY 2 D0

When the SUB-MENU LED is *not* lit, the currently selected menu is shown on the top line of the Digital Operator display and the currently selected sub-menu is shown on the bottom line of the Digital Operator display.

levels, the menu level, the sub-menu level and the entry level. At the menu level, they function to navigate between menus or sub-menus. At the sub-menu level, they navigate between sub-menus or menu items. At the entry level, they are used to adjust values or select options. Six (6) keys are used for this navigation, they are:

The digital operator keys operate on three

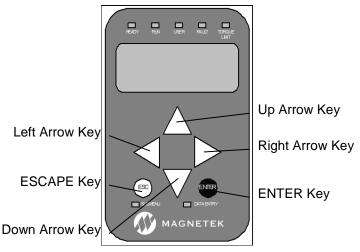
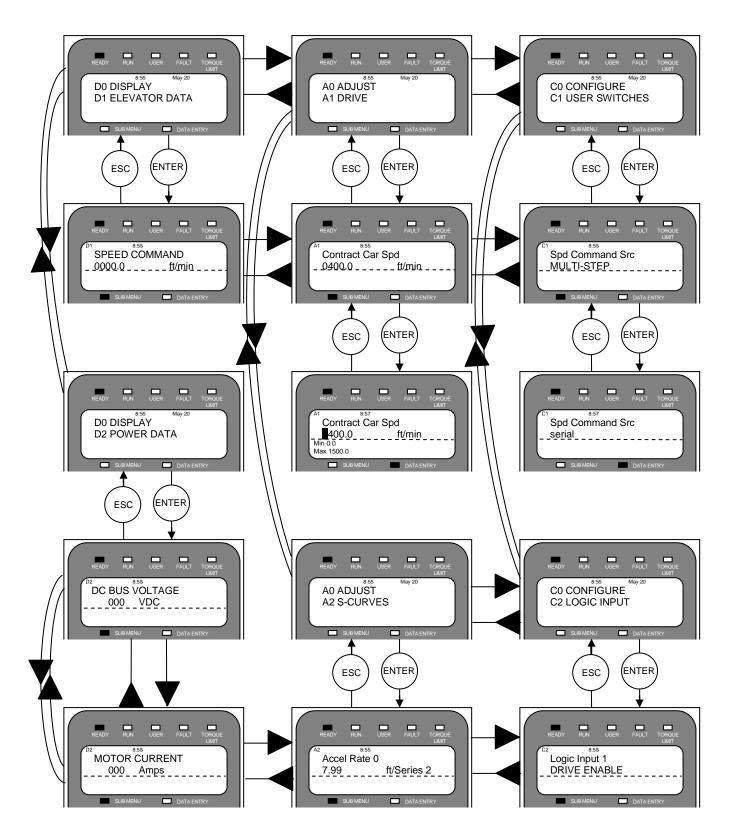



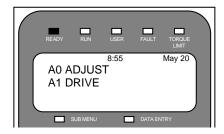
Figure 27: Digital Operator Keys

The menu/sub-menu tree is shown below.

Figure 28: Menu/Sub-Menu Tree

Figure 29: Operator Navigation

Menus

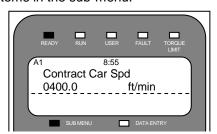

Each menu has a number of sub-menus, see Figure 28.

Menu Navigation

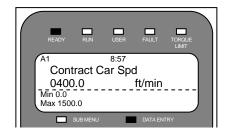
How these keys in Figure 27 operate is dependent on the "level" (i.e. menu, sub-menu or entry level.) In general, the "ENTER" and "ESCAPE" keys control the level. That is the ENTER key used to move to a lower level and the ESCAPE key is used to move to a higher level. The arrow keys control movement. With the up and down arrow keys controlling vertical position. And the left and right arrow keys controlling horizontal position.

Navigation at the Menu Level

At the menu level, the up and down arrow keys cause the display to show the sub-menus. The side arrow keys cause the display to select which menu is active. When the end is reached (either up, down, left or right), pressing the same key will cause a wrap around.



Each menu will remember the last accessed sub-menu. The left and right arrow keys will navigate between these last active sub-menus. This remembrance of last active sub-menu is volatile and will be lost at power down.


When any sub-menu is displayed, pressing the "ENTER" key will place the operator in the sub-menu level.

Navigation at the Sub-menu Level

When in the sub-menu level, the SUB-MENU LED on the digital operator is lit. At the sub-menu level, the positioning keys work slightly different than they did at the menu level. The up and down arrow keys now select separate items in the sub-menu.

Navigation at the Entry Level When in the entry level, the DATA ENT LED on the digital operator is lit. At the entry level, the functions of keys are redefined. The "ESCAPE" key remains as the key used to move back to the higher level. The left and right arrow keys are used as cursor positioning keys and the up and down arrow keys are used as increment and decrement keys.

Upon exiting a sub-menu via the "ESCAPE" key, the last item number is "remembered". The next time this sub-menu is entered, it is entered at the "remembered" item number. This feature can be used to obtain quick access to two monitor values. Two menus one labeled Display 1 D0 and one labeled Display 2 D0 have the same display items. One item can be selected one under the Display 1 menu and another under the Display 2 menu. The left and right arrow keys can then be used to move back and forth between these two display items. Remember, that the "remembering" of sub-menus and sub-menu items is volatile and is lost at power-down.

Hidden Parameters

There are two types of parameters: standard and hidden. Standard parameters are available at all times. Hidden parameters are for more advanced functions and are available only if activated. Activation of the hidden parameters is accomplished by setting of a utility parameter, HIDDEN ITEMS U2. See details in Hidden Items on page 108.

Closed Loop Parameters

Display D0

Elevator Data D1

- Speed Command
- Speed Reference
- Speed Feedback
- Encoder Speed
- Speed Error
- Est Inertia
- Logic Outputs
- Logic Inputs
- Rx Logic In
- Start Logic
- Rx Com Status
- Rx Error Count
- Pre-Torque Ref
- Spd Reg Torq Cmd
- Tach Rate Cmd
- FF Torque Cmd
- **Enc Position**
- **Enc Revolution**

Power Data D2

- DC Bus Voltage
- Motor Current
- Motor Voltage
- Motor Frequency
- Motor Torque
- Est No Load Curr %
- Est Rated RPM
- Torque Reference
- Flux Reference
- Flux Output
- % Motor Current
- Power Output
- Slip Frequency
- Motor Overload
- **Drive Overload**
- Flux Current
- **Torque Current**
- Flux Voltage
- Torque Voltage
- Base Impedance
- **Drive Temp**
- **Highest Temp**

Adjust A0

Drive A1

- Contract Car Spd
- Contract Mtr Spd
- Response
- Inertia
- **Encoder Pulses**
- Mtr Torque Limit
- Regen Torq Limit
- Flux Wkn Factor
- Trg Lim Msg Dly
- Gain Reduce Mult
- Gain Chng Level
- Spd Dev Hi Level
- Ramped Stop Time
- Contact Flt Time
- Contactor Do Dly
- Flt Reset Delay
- Flt Resets/Hour
- **Brake Pick Time**
- Ab Zero Spd Lev

S-Curves A2

Accel Jerk Out 0

Decel Jerk Out 0

Decel Jerk In 0

Accel Rate 1

Decel Rate 1

Ab Off Delay

Accel Rate 0

Decel Rate 0 Accel Jerk In 0

- Accel Jerk In 1
- Accel Jerk Out 1
- Decel Jerk In 1

Brake Hold Time

Overspeed Level

Overspeed Time

Overspeed Mult

Spd Dev Time

Spd Dev Lo Level

Up To Spd. Level

Zero Speed Level Zero Speed Time

Up/Dwn Threshold

Rollback Gain

Notch Filter Fra

Notch Filt Depth

Run Delay Timer

Inner Loop Xover

Spd Phase Margin

Spd Command Bias

Spd Command Mult

Tach Rate Gain

- Decel Jerk Out 1
- Accel Rate 2
- Decel Rate 2
- Accel Jerk In 2
- Accel Jerk Out 2
- Decel Jerk In 2
- Decel Jerk Out 2

Pre Torque Bias

Pre Torque Mult

Pre Torque Time

Ext Torque Bias

Ext Torque Mult

Ana Out 1 Offset

Ana Out 2 Offset Ana Out 1 Gain

Ana Out 2 Gain

Ser2 Rs Crp Spd

Ser2 Rs Cpr Time

Mains Dip Speed

Ser2 Insp Spd

Ser2 Flt Tol

Mspd Delay 1

Mspd Delay 2 Mspd Delay 3

Mspd Delay 4

Mid Speed Lvl

- Accel Rate 3
- Decel Rate 3
- Accel Jerk In 3
- Accel Jerk Out 3
- Decel Jerk In 3
- Decel Jerk Out 3

Multistep Ref A3

- Speed Command 1
- Speed Command 2
- Speed Command 3
- Speed Command 4
- Speed Command 5
- Speed Command 6 Speed Command 7
- Speed Command 8
- Speed Command 9
- Speed Command 10
- Speed Command 11 Speed Command 12
- Speed Command 13
- Speed Command 14

IQ Reg Prop Gain

Speed Command 15

Power Convert A4

- Input L-L Volts
- **UV Alarm Level**
- **UV Fault Level**
- **PWM Frequency** Motor A5

Rated Mtr Power

Rated Mtr Volts

Rated Excit Freq

Rated Motor Curr

Motor Poles

Motor Id

- Extern Reactance ID Reg Diff Gain
- ID Reg Prop Gain

- IQ Reg Diff Gain
- Rated Mtr Speed
- % No Load Curr Stator Leakage X
- Rotor Leakage X
- Flux Sat Break
- Flux Sat Slope 1

- Load Sense Time
- Fan Off Delay
- Flux Sat Slope 2 Ovld Start Level
- Ovld Time Out
- Stator Resist
- Motor Iron Loss
- Motor Mech Loss

Configure C0

User Switches C1

- Spd Command Src
- Run Command Src
- Motor Rotation
- Encoder Connect
- Encoder Fault
- Cont Confrim Src
- Fast Flux
- Hi/Lo Gain Src
- Ramped Stop Sel
- Ramp Down En Src
- S-Curve Abort
- DB Protection
- Spd Ref Release
- Brake Pick Src
- Brake Pick Cnfm
- Motor Ovrld Sel
- Stopping Mode
- Auto Stop
- Serial Mode
- Ser2 Flt Mode

- Drv Fast Disable
- Speed Reg Type
- Brake Hold Src
- Brk Pick Flt Ena
- Brk Hold Flt Ena
- Ext Torq Cmd Src
- Fault Reset Src
- Overspd Test Src
- Pretorque Source
- Pretorque Latch
- Ptorq Latch Clck
- Dir Confirm
- Mains Dip Ena
- Mlt-Spd to Dly 1
- Mlt-Spd to Dly 2
- Mlt-Spd to Dly 3
- Mlt-Spd to Dly 4
- Priority Msg

• Logic Input 6

• Logic Input 7

• Logic Input 8

• Logic Input 9

Drive Enable Src

Logic Inputs C2

- Logic Input 1
- Logic Input 2
- Logic Input 3
- Logic Input 4
- Logic Input 5

Logic Outputs C3

- Logic Output 1
- Logic Output 2
- Logic Output 3
- Logic Output 4
- Relay Coil 1
- Relay Coil 2
- User LED

Analog Outputs C4

- Analog Output 1
- Analog Output 2

Utility U0

→ Password U1

- New Password
- Enter Password
- Password Lockout

Hidden Items U2

Hidden Items Enable

Units U3

• Units Selection

→ Ovrspeed Test U4

Overspeed Test?

Restore Dflts U5

- Rst Mtr Defaults
- Rst Drive Defaults

Drive Info U6

- **Drive Version**
- **Boot Version**
- Cube ID
- Drive Type

Hex Monitor U7

Address

Language Sel U8

Language Select

Basics U9

Drive Mode

Time U11

- Year
- Month
- Day
- Hour
- Minute Second

Faults F0

- Active Faults F1
- → Fault History F2
- Sorted History F3

Reset Faults F4

- Rst Active Flts
- Clr Flt Hist

PM Parameters

Display D0

Elevator Data D1

- Speed Command
- Speed Reference
- Speed Feedback
- Encoder Speed
- Speed Error
- Est Inertia
- Logic Outputs
- Logic Inputs
- Rx Logic In
- Start Logic
- Rx Com Status
- Rx Error Count
- Pre-Torque Ref
- Spd Reg Torq Cmd
- Tach Rate Cmd
- FF Torque Cmd
- Enc Position
- **Enc Revolution**

Power Data D2

- DC Bus Voltage
- Motor Current
- Motor Voltage
- Motor Frequency
- **Motor Torque**
- Torque Reference
- % Motor Current
- Power Output
- D-Curr Reference
- Motor Overload
- **Drive Overload**
- Flux Current
- **Torque Current**
- Flux Voltage
- Torque Voltage
- Base Impedance
- Rated Excit Freq
- Rotor Position
- **Drive Temp**
- **Highest Temp**

Adjust A0

Drive A1

- Contract Car Spd
- Contract Mtr Spd
- Response
- Inertia
- **Encoder Pulses**
- Serial Cnts/Rev
- Mtr Torque Limit
- Regen Torg Limit
- Trg Lim Msg Dly
- Gain Reduce Mult
- Gain Chng Level
- Ramped Stop Time
- Contact Flt Time
- Contactor Do Dly Flt Reset Delay
- Flt Resets/Hour
- **Brake Pick Time**
- Ab Zero Spd Lev
- Ab Off Delay
- Brake Hold Time
- Overspeed Level
- Overspeed Time

S-Curves A2

- Accel Rate 0
- Decel Rate 0
- Accel Jerk In 0 Accel Jerk Out 0
- Decel Jerk In 0
- Decel Jerk Out 0
- Accel Rate 1
- Decel Rate 1

Multistep Ref A3

- Speed Command 1
- Speed Command 2
- Speed Command 3
- Speed Command 4

Input L-L Volts

UV Alarm Level

UV Fault Level PWM Frequency

Extern Reactance

ID Reg Diff Gain

ID Reg Prop Gain

- Speed Command 5

Power Convert A4

Speed Command 6

Overspeed Mult

Spd Dev Time

Spd Dev Lo Level

Spd Dev Alm Lvl

Spd Dev Flt Lvl

Up To Spd. Level

Zero Speed Level

Zero Speed Time

Up/Dwn Threshold

Notch Filter Frq

Notch Filt Depth

Run Delay Timer

Tach Rate Gain Inner Loop Xover

Spd Phase Margin

Spd Command Bias

Spd Command Mult

Pre Torque Bias

Pre Torque Mult

Pre Torque Time

Ext Torque Bias

Ext Torque Mult

Accel Jerk In 1

Accel Jerk Out 1

Decel Jerk In 1

Accel Rate 2

Decel Rate 2

Accel Jerk In 2

Accel Jerk Out 2

Decel Jerk Out 1

- Speed Command 8

ID Reg Intg Gain

IQ Reg Diff Gain

IQ Reg Prop Gain

IQ Reg Intg Gain

ID Ref Threshold

Flux Weaken Rate

Fine Tune Ofst

- Speed Command 7

- Speed Command 9

- Speed Command 10

- Speed Command 15

Ana Out 1 Offset

Ana Out 2 Offset

Ana Out 1 Gain

Ana Out 2 Gain

Ser2 Rs Crp Spd

Ser2 Rs Cpr Time

Ser2 Insp Spd

Ser2 Flt Tol

ARB Inertia

Mspd Delay 1

Mspd Delay 2

Mspd Delay 3

Mspd Delay 4

Mid Speed Lvl

Encdr Flt Sense

ARB Deadband

Abs Ref Offset

Decel Jerk In 2

Accel Rate 3

Decel Rate 3

Accel Jerk In 3

Accel Jerk Out 3

Decel Jerk Out 3

Decel Jerk In 3

Decel Jerk Out 2

Arb Start Time

Arb Decay Rate

ARB Torque Time Mains Dip Speed

Speed Command 14

Speed Command 11

Speed Command 12

Speed Command 13

- Flux Weaken Lev Align VIt Factor
- Brake Opn Flt Lv
- Load Sense Time
- Autoalign Volts
- Fan Off Delay

Motor A5

- Motor Id
- Rated Mtr Power
- Rated Mtr Volts
- Rated Motor Curr
- Motor Poles
- Rated Mtr Speed
- Ovld Start Level
- Ovld Time Out Stator Resist
- Motor Iron Loss
- Motor Mech Loss
- D Axis Induct
- Q Axis Induct
- Trg Const Scale
- **Encoder Ang Ofst**

Faults F0

Configure C0

User Switches C1

- Spd Command Src
- Run Command Src
- Motor Rotation
- Encoder Select
- Encoder Connect
- Encoder Fault
- Cont Confrim Src
- Hi/Lo Gain Src
- I-Reg Inner Loop
- Ramped Stop Sel
- Ramp Down En Src
- S-Curve Abort
- DB Protection
- Spd Ref Release
- Brake Pick Src
- Brake Pick Cnfm
- Motor Ovrld Sel
- Stopping Mode
- Auto Stop
- Serial Mode
- Ser2 Flt Mode

• Drv Fast Disable

Speed Reg Type

Brake Hold Src

• Brk Pick Flt Ena

Brk Hold Flt Ena

• Fault Reset Src

Overspd Test Src

• Pretorque Source

Pretorque Latch

• Ptorq Latch Clck

• Mains Dip Ena

• Mlt-Spd to Dly 1

• Mlt-Spd to Dly 2

• Mlt-Spd to Dly 3

• Mlt-Spd to Dly 4

• Drive Enable Src

• Priority Msg

• Logic Input 6

• Logic Input 7

• Logic Input 8

• Logic Input 9

• Relay Coil 1

• Relay Coil 2

• User LED

Arb Select

• Dir Confirm

• Ext Torq Cmd Src

- Enter Password

Hidden Items U2

- Hidden Items Enable
- Units U3

Ovrspeed Test U4

Overspeed Test?

Restore Dflts U5

- Rst Mtr Defaults
- · Rst Drive Defaults

Drive Info U6

- Drive Version
- Boot Version
- Cube ID
- Drive Type

Hex Monitor U7

Address

Language Sel U8

Language Select

Basics U9

• Drive Mode

Rotor Align U10

- Alignment
- Begin Alignment
- Alignment Method

Time U11

- Year
- Month
- Day
- Hour Minute
- Second

AutoTune Sel U12

AutoTune Select

Logic Inputs C2

- Logic Input 1
- Logic Input 2
- Logic Input 3
- Logic Input 4
- Logic Input 5

Logic Outputs C3

- Logic Output 1
- Logic Output 2 Logic Output 3
- Logic Output 4

Utility U0

→ Password U1

- New Password
- Password Lockout

Units Selection

Rst Active Flts

Active Faults F1

Fault History F2

Sorted History F3

Reset Faults F4

Open-Loop Parameters

Display D0

Elevator Data D1

- Speed Command
- Speed Reference
- Speed Feedback
- Encoder Speed
- Logic Outputs
- Logic Inputs
- Rx Logic In
- Rx Error Count
- Enc Position
- Enc Revolution

Power Data D2

- DC Bus Voltage
- Motor Current
- Motor Voltage
- Motor Frequency
- Motor Torque
- % Motor Current
- **Power Output**
- Slip Frequency
- Motor Overload
- **Drive Overload**
- Flux Current
- **Torque Current**
- Flux Voltage
- Torque Voltage
- Base Impedance
- **Drive Temp**
- Highest Temp

Adjust A0

Drive A1

- Contract Car Spd
- Contract Mtr Spd
- **Encoder Pulses**
- Mtr Torque Limit
- Regen Torg Limit
- Trg Lim Msg Dly
- Contact Flt Time
- Contactor Do Dly
- Flt Reset Delay
- Flt Resets/Hour
- **Brake Pick Time** Brake Pick Delay
- Brake Drop Delay
- **Brake Hold Time**
- DC Start Level
- DC Stop Level

- DC Stop Freq
- DC Start Time
- DC Stop Time
- Overspeed Mult
- Stalltest Level
- Stall Fault Time
- Slip Comp Time
- Slip Comp Gain
- Torq Boost Time
- Torq Boost Gain
- Up To Spd. Level
- Zero Speed Level
- Zero Speed Time
- Up/Dwn Threshold
- Spd Command Bias
- **Spd Command Mult**
- Accel Jerk In 1

Accel Jerk Out 1

Decel Jerk Out 1

Decel Jerk In 1

Accel Rate 2

Decel Rate 2

Accel Jerk In 2

Accel Jerk Out 2

- Ana Out 1 Offset
- Ana Out 2 Offset
- Ana Out 1 Gain
- Ana Out 2 Gain
- Ser2 Insp Spd
- Ser2 Rs Crp Spd Ser2 Rs Cpr Time
- Ser2 Flt Tol
- Mains Dip Speed
- Mspd Delay 1
- Mspd Delay 2
- Mspd Delay 3
- Mspd Delay 4
- Mid Speed Lvl
- Cont Dwell Time

Decel Jerk In 2

Accel Rate 3

Decel Rate 3

Accel Jerk In 3

Accel Jerk Out 3

Decel Jerk Out 3

Decel Jerk In 3

Decel Jerk Out 2

S-Curves A2

- Accel Rate 0
- Decel Rate 0
- Accel Jerk In 0
- Accel Jerk Out 0
- Decel Jerk In 0
- Decel Jerk Out 0 Accel Rate 1
- Decel Rate 1
 - **Multistep Ref A3**
- Speed Command 6
- Speed Command 7
- Speed Command 8
- Speed Command 9
- Speed Command 10
- Speed Command 11
- Speed Command 12
- Speed Command 13
- Speed Command 14
- Speed Command 15

Speed Command 5 **Power Convert A4**

Speed Command 1

Speed Command 2

Speed Command 3

Speed Command 4

- Input L-L Volts
- **UV Alarm Level**
- UV Fault Level
- PWM Frequency
- Extern Reactance
- ID Reg Diff Gain
- ID Reg Prop Gain
- IQ Reg Diff Gain
- IQ Reg Prop Gain ID Dist Loop Gn
- IQ Dist Loop Gn
- ID Dist Loop Fc
- IQ Dist Loop Fc I Reg Cross Freg
- Dist Lp Off Freq
- ILimit Integ Gn
- Hunt Prev Gain **Hunt Prev Time**
- Switching Delay
- Vc Correction
- Load Sense Time
- Fan Off Delay

Motor A5

- Motor Id
- Rated Mtr Power Rated Mtr Volts
- Rated Excit Freq
- Rated Motor Curr
- Motor Poles Rated Mtr Speed
- % No Load Curr
- Stator Leakage X
- Rotor Leakage X Motor Min Volts
- Motor Min Frea Motor Mid Volts
- Motor Mid Freq
- Ovld Start Level
- Ovld Time Out
- Stator Resist Motor Iron Loss
- Motor Mech Loss

Configure C0

→ User Switches C1

- Spd Command Src
- Run Command Src
- Motor Rotation
- Encoder Connect
- Cont Confirm Src
- S-Curve Abort
- DB Protection
- Spd Ref Release
- Brake Pick Src
- Brake Pick Cnfm
- Motor Ovrld Sel
- Stopping Mode
- Stopping wode
- Auto Stop
- Stall Test Ena
- Stall Prev Ena
- Serial Mode

na

- > Logic Inputs C2
- Logic Input 1
- Logic Input 2
- Logic Input 3
- Logic Input 4
- Logic Input 5

→ Logic Outputs C3

- Logic Output 1
- Logic Output 2
- Logic Output 3
- Logic Output 4

Analog Outputs C4

- Analog Output 1
- Analog Output 2

• Ser2 Flt Mode

• Drv Fast Disable

Brake Hold Src

• Brk Pick Flt Ena

• Brk Hold Flt Ena

Fault Reset Src

Mains Dip Ena

• Mlt-Spd to Dly 1

• Mlt-Spd to Dly 2

• Mlt-Spd to Dly 3

• Mlt-Spd to Dly 4

• Drive Enable Src

• Priority Msg

• Logic Input 6

• Logic Input 7

• Logic Input 8

• Logic Input 9

• Relay Coil 1

• Relay Coil 2

• User LED

• Dir Confirm

• Overspd Test Src

Utility U0

→ Password U1

- New Password
- Enter Password
- Password Lockout

→ Hidden Items U2

• Hidden Items Enable

→ Units U3

• Units Selection

→ Ovrspeed Test U4

Overspeed Test?

→ Restore Dflts U5

- Rst Mtr Defaults
- Rst Drive Defaults

→ Drive Info U6

- Drive Version
- Boot Version
- Cube ID
- Drive Type

→ Hex Monitor U7

Address

→ Language Sel U8

Language Select

→ Basics U9

• Drive Type

→ Time U11

- Year
- Month
- Day
- HourMinute
- Second

Faults F0

- Active Faults F1
- Fault History F2
- → Sorted History F3

Reset Faults F4

- Rst Active Flts
- · CIr FIt Hist

Adjust A0 Menu

Drive A1 Submenu

NOTE: When the word *Hidden* appears with the parameter description, it indicates that its appearance in the list is controlled by the HIDDEN ITEMS setting. See details on page 108.

NOTE: When the word Lockout appears with the parameter description, the parameter cannot be changed when the drive is in the RUN mode.

Name	Description	Units	Banga	Defa		Hidden	Lock		
Name	Description	Units	Range	ENGLISH (U3)	METRIC (U3)	Item	out		
Contract	(Contract Car Speed) This parameter programs the elevator contract speed in feet	fpm	0.0 – 1500.0	400.0	-	N	Υ		
Car Spd	per minute (fpm) or meters per second (m/s)	m/s	0.000 - 8.000	-	0.000	IN	1		
Contract	(Contract Motor Speed) This parameter programs the motor speed at elevator	rpm	0.0 – 3000.0	1130.0 ^{i,iii}	0.0	N	Y		
Mtr Spd	contract speed in revolutions per minute (rpm).	· piii	0.0 0000.0	130.0 ⁱⁱ	0.0		•		
Response ^{i,ii}	(Response',") This parameter sets the sensitivity of the drive's speed regulator in terms of the speed regulator bandwidth in radians. The responsiveness of the drive as it follows the speed reference will increase as this number increases. If the number is too large, the motor current and speed will become jittery. If this number is too small, the motor will become sluggish.	rad/ sec ^{i,} ii	1.0 – 50.0 ^{i,ii}	10.0 ^{i,ii}		N ^{i,ii}	N ^{i,} "		
Inertia ^{i,ii}	(System Inertia ^{I,II}) This parameter sets the equivalent of the system inertia in terms of the time it takes the elevator to accelerate to motor base speed at rated torque.	sec ^{i,ii}	0.25 - 50.00 ^{i,ii}	2.00 ^{i,ii}		2.00 ^{i,ii}		N ^{i,ii}	N ^{i,ii}
Encoder Pulses	(Encoder Pulses) This parameter sets the pulses per revolution the drive receives from the encoder. This value is directly from the encoder nameplate.	PPR	500 – 40000	1024 ^{i,iii}		N	Υ		
Serial Cnts/ Rev ⁱⁱ	(Serial Counts / Revolution") This parameter sets the number of discrete absolute positions per rotor revolution that the drive receives from the absolute encoder (if applicable). The value for a 13-bit encoder is 8192. All recommended Heidenhain encoders will be 8192.	none ⁱⁱ	0 – 25000 ^{ji}	8192 ⁱⁱ		N ⁱⁱ	Y ⁱⁱ		
Mtr Torque Limit	(Motoring Current Limit) This parameter sets the maximum torque allowed at when in the motoring mode. This parameter may need adjustment to reduce the effects of field weakening. Units in percent of rated torque. Note: The Torque Limit LED will be lit once the limit defined by this parameter is reached.	%	0.0 – 275.0	200).0	N	N		

 $[^]i$ Parameter accessible through **CLOSED LOOP (U9)** Operation only ii Parameter accessibly through **PM (U9)** Operation only ii Parameter accessible through **OPEN LOOP(U9)** Operation only

.			_	Defa	ault	Hidden	Lock
Name	Description	Units	Range	ENGLISH (U3)	METRIC (U3)	Item	out
Regen Torq Limit	(Regenerating Current Limit) This parameter sets the maximum amount of regenerative torque the drive will see during regeneration. This parameter may need adjustment to reduce the effects of field weakening. Units in percent of rated torque. Note: The Torque Limit LED will be lit once the limit defined by this parameter is reached.	%	0.0 – 275.0	200		N	Z
Flux Wkn Factor ⁱ	(Flux Weakening Factor) This parameter limits the maximum amount of torque available at higher speeds. When the drive is commanding higher speeds, this parameter defines a percentage of the defined torque limits (MTR TORQUE LIMIT and REGEN TORQ LIMIT). This parameter is used to reduce the effects of field weakening and reduce the amount of motor current produced at higher speeds. Units in percent of torque.	% ⁱ	60 – 100 ⁱ	100 ⁱ		Y ⁱ	N ⁱ
Trq Lim Msg Dly	(Torque Limit Message Delay) This parameter determines the amount of time the drive is in torque limit before the "HIT TORQUE LIMIT" alarm message is displayed.	sec	0.00 – 10.00	0.50 2.00		Y	Υ
Gain Reduce Mult ^{i,ii}	(Gain Reduce Multiplier ',") This parameter is the percent of 'response' the speed regulator should use in the 'low gain' mode. This value reduces the RESPONSE value when the drive is in 'low gain' mode. (i.e. setting this parameter to 100% equals no reduction in gain in the 'low gain' mode). See GAIN CHNG LEVEL on page 55.	% ^{i,ii}	10 – 100 ^{i,ii}	100) i,ii	γ ι,#	N ^{i,ii}
Gain Chng Level ^{i,ii}	(Gain Change Level "") This parameter sets the speed level to change to low gain mode (only with internal gain switch). See GAIN CHNG LEVEL on page 55. Units in percent of rated speed.	% ^{i,ii}	0.0 – 100.0 ^{i,ii}	100.	0 ^{i,} "	Y ^{i,ii}	N i,ii
Spd Dev Hi Level ⁱ	(Speed Deviation High Level ') This parameter sets the level at which a speed deviation alarm will be declared. For more information, see SPD DEVIATION on page 57.	% ⁱ	0.0 – 99.9 ⁱ	10.0 i		Yi	N i
Ramped Stop Time	(Ramped Stop Time ',") Time to ramp torque from rated torque to zero. Note: this parameter is used only with torque ramp down stop function. For more information see RAMPED STOP TIME on page 57.	sec ^{i,ii}	0.00 - 2.50 ^{i,ii}	0.20 ^{i,ii}	0.50 ^{i,ii}	Y ^{i,ii}	N ^{i,ii}

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

	Book total		_	Defa	ault	Hidden	Lock
Name	Description	Units	Range	ENGLISH (U3)	METRIC (U3)	Y Y Y Y Y	out
Contact Flt Time	(Contact Fault Time) When external logic outputs are used to control the closing of the motor contactor, this parameter sets the amount of time delay at start until the drive output is enabled and current flows. And when external logic inputs are used to confirm the closing of the motor contactor, this parameter sets the time allowed for the contactor's auxiliary contacts to reach the user commanded state before a CONTACTOR FLT occurs.	sec	0.10 - 5.00	0.5	50	Y	N
Contactor DO Dly	(Contactor Drop-out Delay) When the drive controls the motor contactor via CLOSE CONTACT logic output, this parameter, CONTACTOR DO DLY (A1), allows the user to delay the drive's dropout of the motor contactor. The CONTACTOR DO DLY Timer Delay starts when the speed regulator release signal goes false.	sec	0.00 – 5.00	0.0	00	Y	Y
Flt Reset Delay	(Fault Reset Delay) When the drive is set for automatic fault reset, this is the time before a fault is automatically reset.	sec	0 – 120	5	i	Y	N
Flt Resets / Hour	(Fault Resets per Hour) When the drive is set for automatic fault reset, this is the number of faults that is allowed to be automatically reset per hour.	#	0 – 10	3	}	Y	N
Brake Pick Time	(Brake Pick Time) If the brake pick fault is enabled, this parameter sets the time allowed for the brake pick feedback not to match the brake pick command before a BRK PICK FLT occurs. Also, when the user switch SPD REF RELEASE (C1) is set to brake picked, this parameter determines the amount of time the drive will command zero speed after the RUN comman dis removed (time allowed for the brake to close).	sec	0.00 - 5.00	1.0	00	Y	N
Ab Zero Spd Lev ^{i,jj}	(Auto Brake Zero Speed Level '") This parameter sets the speed point that will be considered as zero speed for the auto brake function. The units are % of contract speed and the parameter has a maximum value of 2.00% and a default value of 0.00%. In order to the use the Auto Brake function, a logic output needs to be configured for AUTO BRAKE (C3), the parameter SPD COMMAND SRC(C1)=MULTI-STEP, the parameter SPD REF RELEASE(C1)=BRAKE PICKED, and the parameter BRAKE PICK CFRM(C1)=INTERNAL TIME or EXTERNAL TB1.	% ^{i,ii}	0.00 – 2.00 ^{i,ii}	0.00 ^{ì,ii}		Υ ί,#	Y

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

Name	Description		_		ault	Hidden	Lock
Name	Description	Units	Range	ENGLISH (U3)	METRIC (U3)	Item	out
Ab Off Delay ^{i,ii}	(Auto Brake Off Delay 1,11) This parameter determines the time after zero speed is reached (level determined by the AB ZERO SPD LEV (A1) parameter) that the Auto Brake logic output goes false. The units are seconds and the parameter has a maximum value of 9.99 seconds and a default value of 0.00 seconds.	sec ^{i,ii}	0.00 – 9.99 ^{i,ii}	0.0	o ^{i,} "	Y i,ii	Y ^{i,ii}
Brake Pick Delay ⁱⁱⁱ	(Brake Pick Delay") When external logic outputs are used to control the mechanical brake, this is the time delay from a drive run command until the brake is picked. This time delay needs to be set for the following: have DC injection current before the mechanical brake is picked and have DC injection currnet after the mechanical brake is picked to allow the brake to fully open.	sec ⁱⁱⁱ	0.00 - 5.00 ⁱⁱⁱ	0.5	50 ^{jii}	N ^{III}	Y ⁱⁱⁱ
Brake Drop Delay ⁱⁱⁱ	(Brake Drop Delay") When external logic outputs are used to control the mechanical brake and ramp to stop is selected, this parameter sets the time delay to set the brake after decelerating to the DC Stop Freq. This time delay needs to be set for the following: have DC injection current before the mechanical brake is closed and after the mechanical brake is picked to allow the brake to fully open.	sec ⁱⁱⁱ	0.00 - 5.00 ⁱⁱⁱ	0.50 ^{jii}		N ^{III}	Y ⁱⁱⁱ
Brake Hold Time	(Brake Hold Time) If the brake hold fault is enabled, this parameter sets the time allowed for the brake hold feedback not match the brake hold command before a BRK HOLD FLT occurs.	sec	0.00 - 5.00	0.20		Y	Ν
DC Start Level ⁱⁱⁱ	(DC Injection Current Start Leveli") The level of DC injection current at start is a percent of motor rated current. The DC injection current will hold the motor shaft in a fixed position as the drive outputs a DC current to the motor. At the start, it is important to have DC injection current before the mechanical brake is picked to allow the brake to fully open	% ⁱⁱⁱ	0.0 – 150.0 ⁱⁱⁱ	80.0 ⁱⁱⁱ	50.0 ⁱⁱⁱ	N ⁱⁱⁱ	Y ⁱⁱⁱ
DC Stop Level ⁱⁱⁱ	(DC Injection Current Stop Level") The level of DC injection current at stop is a percent of motor rated current. To hold the motor shaft in a fixed position the drive will output a DC current to the motor. At the stop, it is important to have DC injection current before the mechanical brake is closed and to have DC injection current after the mechanical brake is closed to allow the brake to fully set.	% ⁱⁱⁱ	0.0 – 150.0 ⁱⁱⁱ	50.0 ^{jii}		N ⁱⁱⁱ	Y ⁱⁱⁱ
DC Stop Freq ⁱⁱⁱ	(DC Injection Stopping Frequency") The frequency at which DC injection begins to occur when the drive is decelerating to a stop. If ramp to stop is selected and the run command is removed, the drive decelerates from its current speed to the DC stop frequency and then DC injection is applied.	Hz ⁱⁱⁱ	0.0 – 10.0 ⁱⁱⁱ	0	5 ⁱⁱⁱ	N ⁱⁱⁱ	Y ⁱⁱⁱ

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

Name	Description		_	Defa	ault	Hidden	Lock
Name	Description	Units	Range	ENGLISH (U3)	METRIC (U3)	Item	out
DC Start Time ⁱⁱⁱ	(DC Injection Current Start Time ^{III}) The time DC injection current is applied following a valid run command until the release of the speed command. After receiving a valid run command the drive will maintain DC Start Level current for Dc Start Time in seconds before releasing the internal speed reference allowing the drive to ramp up in speed. At the start, it is important to have DC injection current before and after the mechanical brake is picked to allow the brake to fully open.	sec ⁱⁱⁱ	0.00 – 5.00 ^{jii}	1.0		N ⁱⁱⁱ	Y ⁱⁱⁱ
DC Stop Time ^{lii}	(DC Injection Current Stop Time ^{III}) The time the level of DC injection current at stop is at DC STOP LEVEL. If ramp to stop is selected, the drive will ramp down in speed following removal of the run command to the DC Stop Freq and will then output DC Stop Level current for DC Stop Time seconds. At the stop, it is important to have DC injection current after the mechanical brake is closed to allow the brake to fully close.	sec ⁱⁱⁱ	0.00 – 5.00 ⁱⁱⁱ	1.0	00 ⁱⁱⁱ	N ⁱⁱⁱ	Y ⁱⁱⁱ
Overspeed Level ^{1,ii}	(Overspeed Level ^{1,II}) This parameter sets the percentage of rated speed the drive uses (in conjunction with OVERSPEED TIME, below) to determine when an OVERSPEED FLT occurs. Units in percent of contract speed.	% ^{i,ii}	100.0 — 150.0 ^{i,} "	115.0 ^{i,ji}		Y ^{i, ii}	N ^{i,ii}
Overspeed Time ^{i,ii}	(Overspeed Time ^{1,//}) This parameter sets the time that the drive can be at or above the OVERSPEED LEVEL (A1), before the drive declares an OVERSPEED FLT.	sec ^{i,ii}	0.00 - 9.99 ^{i,ii}	1.0	0 ^{i,ii}	Y ^{i,ii}	N ^{i,ii}
Overspeed Mult	(Over Speed Multiplier) This parameter sets the percentage of contract speed for the OVERSPEED TEST (U4).	%	100.0 – 150.0	125	5.0	Υ	N
Stalltest Level ⁱⁱⁱ	(Stall Test Level ^{III}) This parameter sets the percentage of motor current the drive uses (in conjunction with STALL FAULT TIME(A1)) to determine when an STALL FAULT occurs. In order for a STALL TEST FAULT to occur, it must be enabled by the STALL TEST ENA (C1) parameter. Units in percent of rated motor current.	% ⁱⁱⁱ	0.0 – 200.0 ⁱⁱⁱ	200	o.O ^{jii}	N ⁱⁱⁱ	Y ⁱⁱⁱ
Stall Fault Time ⁱⁱⁱ	(Stall Fault Time ^{III}) This parameter sets the time that the drive can be at or above the STALL TEST LVL(A1), before the drive declares an STALL TEST FAULT. In order for a STALL TEST FAULT to occur, it must be enabled by the STALL TEST ENA (C1) parameter.	sec ⁱⁱⁱ	0.00 — 9.99 ^{jii}	5.0	00 ⁱⁱⁱ	N ⁱⁱⁱ	N ⁱⁱⁱ

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

	Description			Defa		Hidden	Lock
Name	Description	Units	Range	ENGLISH (U3)	METRIC (U3)	Item	out
Slip Comp Time ⁱⁱⁱ	(Slip Compensation Time Constant) Slip compensation filter time constant. Adjusted for slip compensation response and stability. By increasing the value of the parameter, the response time of the slip compensation function will become slower. Reducing the parameter to a lower value makes the slip compensation function respond more quickly. Note: Setting the parameter too low may result in unstable motor operation or setting the parameter too high will result in very poor response. NOTE: it is usually best to leave this parameter set at default of 1.5 seconds. Slip compensation allows an open-loop drive to maintain constant motor speed regardless of loading. The function adjusts the drive's output frequency (and output voltage) to compensate for motor slip as the motor load is increased. The compensation is based on the motor rated speed, frequency and calculated motor torque, therefore a valid value must be entered for the Rated Motor Speed (RATED MTR SPEED(A5))	sec ⁱⁱⁱ	0.01 – 2.00 ⁱⁱⁱ	1.5	1.50 ^{jii}		N ⁱⁱⁱ
Slip Comp Gain ⁱⁱⁱ	(Slip Compensation Gain ^{III}) Multiplier of motor rated slip at rated torque. Setting the parameter to 1.00 compensates the drive output frequency by rated slip at rated torque. Setting the Slip Compensation Gain to 0.00 disables the slip compensation function. NOTE: it is usually best to leave this parameter set at the default of 1.0. Slip compensation allows an open-loop drive to maintain constant motor speed regardless of loading. The function adjusts the drive's output frequency (and output voltage) to compensate for motor slip as the motor load is increased. The compensation is based on the motor rated speed, frequency and calculated motor torque, therefore a valid value must be entered for the Rated Motor Speed (RATED MTR SPEED(A5))	none ⁱⁱⁱ	0.00 – 2.00 ⁱⁱⁱ	1.00 ⁱⁱⁱ		N ^{riii}	N ⁱⁱⁱ

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

Name			_	Defa	ault	Hidden	Lock
Name	Description	Units	Range	ENGLISH (U3)	METRIC (U3)	Item	out
Torq Boost Time ⁱⁱⁱ	(Torque Boost Time Constant") This parameter is the torque boost filter time constant. Adjusted for torque compensation response and stability. Increasing the value of the parameter, decreases response. Reducing the parameter to a lower value increases response. NOTE: it is usually best to leave this parameter set at the default of 0.5 seconds. Torque compensation automatically boosts the drive's output voltage, in excess of the programmed V/Hz pattern, as the load demand increases. Torque compensation counters the voltage drop in the motor stator resistance. This function has the greatest effect at low speeds improving load response. When using torque compensation, a valid value must be entered for the motor's no-load current (% NO LOAD CURR(A5))	sec ⁱⁱⁱ	0.01 – 1.00 ⁱⁱⁱ	0.0		N ⁱⁱⁱ	N ⁱⁱⁱ
Torq Boost Gain ⁱⁱⁱ	(Torque Boost Gain ^{III}) This gain controls the differential term in the voltage boost function. This affects the rate of response of the torque boost. Setting the Torque Boost Gain to 0.00 disables the torque boost function. NOTE: this function is defaulted off (TORQ BOOSTGAIN=0.0). If adjustments need to be made follow the guidelines listed in the "Performance Adjustments" on page 152. Torque compensation automatically boosts the drive's output voltage, in excess of the programmed V/Hz pattern, as the load demand increases. Torque compensation counters the voltage drop in the motor stator resistance. This function has the greatest effect at low speeds improving load response. When using torque compensation, a valid value must be entered for the motor's no-load current (% NO LOAD CURR(A5))	none ⁱⁱⁱ	0.00 – 2.00 ^{jii}	0.00 ^{jii}		N ⁱⁱⁱ	N ⁱⁱⁱ
Spd Dev Lo Level ^{i,ii}	(Speed Deviation Lo Level ^{1,II}) Range around the speed reference for speed deviation low logic output. For more information, see SPD DEVIATION on page 57. Units in percent of contract speed.	% ^{i,ii}	0.1 - 20.0 ^{i,ii}	10.0 ^{i,ii}	20.0 ^{i,ii}	Y ^{i,ii}	N ^{i,ii}
Spd Dev Time ^{i,ii}	(Speed Deviation Time ^{1,11}) This parameter defines the time the speed feedback needs to be in the range around the speed reference defined by SPD DEV LO LEVEL (A1) before the Speed Deviation Low logic output is true. For more information, see SPD DEVIATION on page 57.	sec ^{i,ii}	0.00 – 9.99 ^{i,ii}	0.50 ^{i,ii}	5.00 ^{i,ii}	Υ ^{i,II}	N ^{i,ii}
Spd Dev Alm Lvi ⁱⁱ	(Speed Deviation Alarm Level") This parameter sets the level at which a speed deviation alarm will be declared. For more information, see SPD DEVIATION on page 57.	% ⁱⁱ	0.0 – 99.9 ^{ji}	10.	.oʻʻ	N ⁱⁱ	N ⁱⁱ

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

Name	Promincian	112	D	Defa		Hidden	Lock
Name	Description	Units	Range	ENGLISH (U3)	METRIC (U3)	Item	out
Spd Dev Fit Lvi ⁱⁱ	(Speed Deviation Fault Level") This parameter sets the level at which a speed deviation fault will be declared. For more information, see SPD DEVIATION on page 57.	% ⁱⁱ	0.0 – 30.0 ⁱⁱ	25.		Nii	N ⁱⁱ
Up to Spd. Level	(Up to Speed Level) This parameter sets the threshold for the up to speed logic output. This is only used to generate the up to speed logic output. Units in percent of contract speed.	%	0.00 - 110.00	80.00		Y	Z
Zero Speed Level	(Zero Speed Level) This parameter sets the threshold for zero speed detection. This is only used to generate the zero speed logic output. Note: if DIR CONFIRM (C1) is enabled, this parameter also sets the threshold for the termination of the test to confirm the polarity of the analog speed command. Units in percent of contract speed.	%	0.00 - 99.99	1.00	2.50	Y	Y
Zero Speed Time	(Zero Speed Time) This parameter sets the time at which the drive is at the ZERO SPEED LEVEL (A1) before zero speed logic output is true	sec	0.00 - 9.99	0.10		Υ	Υ
Up/Dwn Thrshold	(Directional Threshold) This parameter sets the threshold for the direction sense logic outputs. If speed feedback does not reach this level, the drive will not detect a directional change. This is only used to generate the direction sense logic outputs (car going up and car going down). Units in percent of contract speed.	%	0.00 - 9.99	1.00		Y	Y
Notch Filter Freq ^{i,ii}	(Notch Filter Frequency ^{1,11}) Notch filter center frequency. For more information, see NOTCH FILTER FRQ on page 58.	Hz ^{i,}	5 – 60 ^{i,ii}	20 ^{i,ii}		Y ^{i,ii}	Y ^{i,#}
Notch Filt Depth ^{i,ii}	(Notch Filter Depth ^{I,II}) This parameter determines notch filter maximum attenuation. Note: A filter depth setting of zero (NOTCH FILT DEPTH (A1) =0) removes the filter. For more information, see NOTCH FILTER FRQ on page 58.	% ^{i,ii}	0 – 100 ^{i,ii}			Y ^{i,II}	Y ^{i,#}

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

Name	Description		T	Defa	ault	Hidden	Lock
Name	Description	Units	Range	ENGLISH (U3)	METRIC (U3)	Item	out
Run Delay Timer ^{i,ii}	(Run Delay Timer ^{I,III}) Allows the user to delay the drive's recognition of the RUN signal. internal connection READY TO RUN (logic output) software ready no faults RUN or RUN UP or RUN DOWN (logic input) Drive Internal Signals Speed Regulator and Reference Release DRIVE ENABLE (logic input) CONTACT CFIRM (logic input) (if used)	sec ^{i,#}	0.00 – 0.99 ^{i,ii}	0.0		Y ^{i,II}	Y ^{i,#}
Tach Rate Gain ^{i,ii}	(Tach Rate Gain ^{1,11}) This parameter can be used to help to reduce the effects of rope resonance. It should be adjusted only after the INERTIA (A1), and RESPONSE (A1) has been set correctly. The tach rate function is available for high performance systems that exhibit problems with rope resonance characteristics. This function subtracts a portion of the speed feedback derivative from the output of the speed regulator. The Tach Rate Gain parameter (TACH RATE GAIN (A1)) selects a unit less gain factor that determines how	none i,ii	0.0 – 30.0 ^{i,II}	0.0 ^{i,ii}		Y ^{i,II}	N ^{i,#}
Inner Loop Xover ^{i,ii}	much of the derivative is subtracted. (Inner Loop Cross Over ^{I,II}) This parameter sets the inner speed loop cross over frequency. This parameter is only used by the Elevator Speed Regulator (Ereg).	rad/ sec ^{i,ii}	0.1 – 20.0 ^{i,ii}	2.0) ^{i,ff}	N ^{i,ii}	N ^{i,#}
Spd Phase Margin ^{i,ii}	(Speed Phase Margin ^{1,11}) This parameter sets the phase margin of the speed regulator assuming a pure inertial load. This parameter is only used by the PI speed regulator.	degs i,ii	45 – 90 ^{i,ii}	80	i, <i>ii</i>	Y ^{i,ii}	N ^{i,ii}
Spd Command Bias	(Speed Command Bias) This parameter subtracts an effective voltage to the actual analog speed command voltage signal. (analog SPD SPD Signal drive COMMAND SPD SPD Software MULT uses	volts	-6.00 - +6.00	0.0	00	Y	Υ

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only 50

Name	B		T	Default		Hidden	Lock
Name	Description	Units	Range	ENGLISH (U3)	METRIC (U3)	Item	out
Spd Command Mult	(Speed Command Multiplier) This parameter scales the analog speed command. (analog SPD SPD SPD SPD drive input BIAS MULT Software uses	none	-10.00 - +10.00	1.0		Y	Y
Pre Torque Bias ^{i,ii}	(Pre-Torque Bias ^{1,II}) This parameter subtracts an effective voltage to the actual analog pre torque command (channel 2) voltage signal. (analog PRE Signal Arive Arive Arive Software NULT Uses Software Uses	volts i,ii	-6.00 - 6.00 i.#	0.00	O ^{i,jj}	Y ^{i,II}	Y ^{i,#}
Pre Torque Mult ^{i,ii}	(Pre-Torque Multiplier', This parameter scales the analog pretorque command (channel 2). (analog PRE channel#2 - TORQUE input BIAS Voltage PRE MULT software uses	none i,#	-10.00 - +10.00 ^{i,ii}	1.0	O ^{i,<i>ii</i>}	N ^{i,#}	Y ^{i,#}
Pre Torque Time ^{i,ii}	(Pre Torque Time ^{1,ii}) Time to ramp torque from zero to pre-torque value. When set to zero, Pre-Torque will be applied immediately. This helps eliminate the 'bump' felt upon starting caused by the torque being immediately set to rated pre-torque. Setting this parameter to zero will disable the Pre Torque Ramp Up function. With a non-zero setting for Pre Torque Time, the torque reference will be linearly ramped from zero to the value given through the Analog Input Channel or the serial channel.	sec ^{i,ii}	0.00 - 10.00 ^{i,ii}	0.00 ^{i,jj}		N ^{i,ii}	N ^{i,ii}
Ext Torque Bias ^{i,ii}	(External Torque Bias'-") This parameter subtracts an effective voltage to the actual analog pre torque / torque command (channel 2) voltage signal. For more information, see Analog Inputs on page 13. (analog channel#2 of TORQUE input of TORQUE BIAS) × TORQUE of TORQUE software uses	volts i,ii	-6.00 – 6.00 ^{i,ii}	0.0	0.00 ^{i,ii}		N ^{i,#}
Ext Torque Mult ^{i,ii}	(External Torque Multiplier ^{I,III}) This parameter scales the analog pretorque / torque command (channel 2). If this function is set to 1.00, a 10V signal will call for 100% torque. For more information, see Analog Inputs on page 13. (analog channelIII TORQUE input of TORQUE BIAS) × TORQUE of MULT signal drive software uses	none i,ii	-10.00 - +10.00 ^{i,ii}	1.001.//		N ^{i,II}	N ^{i,II}
Ana 1 Out Offset	(Digital to Analog #1 Output Offset) Offset for scaling Analog Output Channel #1. (signal ANA drive OFFSET OFFSET OFFSET OFFSET OFFSET OFFSET OUT OUT OUT OUT OUT OUT OUT OUT OUT OU	%	-99.9 - +99.9	0.0		Y	N

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

	Description		_	Def	ault	Hidden	Lock
Name	Description	Units	Range	ENGLISH (U3)	METRIC (U3)	Item	out
Ana 2 Out Offset	(Digital to Analog #2 Output Offset) Offset for scaling Analog Output Channel #2. (Signal ANA drive - OUT software OFFSET Creates OFFSET GAIN Voltage	%	-99.9 – +99.9	0.	,	Y	N
Ana 1 Out Gain	(Digital to Analog #1 Output Gain) Adjusts the scaling for the Analog Output Channel #1. NOTE: value of 1.0 = 0 to 10VDC signal. (signal ANA drive OUT Software OFFSET GAIN OUT Software OFFSET GAIN Voltage	none	0.0 – 10.0	1.	0	Y	N
Ana 2 Out Gain	(Digital to Analog #2 Output Gain) Adjusts the scaling for the Analog Output Channel #2. NOTE: value of 1.0 = 0 to 10VDC signal. (Signal ANA analog ANA analog channel software OFFSET OFFSET GAIN voltage	none	0.0 – 10.0	1.0		Y	N
Ser2 Insp	(Serial Mode 2 Inspection Speed) Used only with custom serial protocol (mode 2) When in Serial Mode 2, this parameter defines the inspection speed to be used. To run in inspection speed via serial mode 2 requires that the run command for inspection	ft/ min	0.0 – 100.0	30.0	-	- Y	Y
Spd	speed come from two sources, a command sent in a serial message and via hardware as a logic input defined as "SER2 INSP ENA".	m/sec	0.000 - 0.500	-	0.150	'	•
Ser2 Rs	(Serial Mode 2 Rescue Creep Speed) Used only with custom serial protocol (mode 2) When in Serial Mode 2 and SER2 FLT	ft/ min	0.0 - 300.0	10.0	-	Y	Y
Crp Spd	MODE (C1)=rescue, this parameter defines the creep speed that will be used in the "rescue mode".	m/sec	0.000 - 1.540	-	0.050	·	
Ser2 Rs Crp Time	(Serial Mode 2 Rescue Creep Time) Used only with custom serial protocol (mode 2) When in Serial Mode 2 and SER2 FLT MODE (C1)=rescue, this parameter defines the maximum time the drive will continue to run at rescue creep speed (defined by SER2 RS CRP SPD (A1) parameter) when reacting to a serial fault. The time is defined as the time running at creep speed. It does not include the time it takes to decelerate to creep speed.	sec	0.0 – 200.0	180.0		Y	Y
Ser2 Flt Tol	(Serial Mode 2 Fault Tolerance) Used only with custom serial protocol (mode 2) When in Serial Mode 2, this parameter defines the maximum time that may elapse between valid run time messages while in serial run mode before a serial fault is declared.	sec	0.00 – 2.00	0.50		Y	Υ

NI.	5				ault	Hidden	Lock
Name	Description	Units	Range	ENGLISH (U3)	METRIC (U3)	Item	out
Arb Start Time ⁱⁱ	(Anti-Rollback Start Time") ARB Start Time (A1) is the dwell time between the logic output SPD REG RLS and the brake starting to pick. ARB will not become activated until ARB START TIME (A1) has occurred. Setting this value too long will cause major rollback to occur. Setting this value too short will cause ARB to begin while the brake is still set. Adjust the ARB START TIME (A1) to begin just as the brake is lifting. For more information, see ANTI-ROLLBACK on page 59.	sec ⁱⁱ	0.00 – 5.00 ⁱⁱ	0.3	30 ^{ji}	N [#]	Y ⁱⁱ
Arb Decay Rate ⁱⁱ	(Anti-Rollback Decay Rate") ARB Decay Rate determines the slew rate for torque while in ARB mode. The higher the value, the more torque change may occur while the lower the value, the less torque change may occur. Setting this value to the maximum 0.99 indicates limited decay. The faster the brake lifts, the higher this value should be. For more information, see ANTI-ROLLBACK on page 59	none ⁱⁱ	0.000 – 0.999 ^{ji}	0.900 ⁱⁱ 1.00 ⁱⁱ		N ⁱⁱ	Y ⁱⁱ
ARB Inertia ⁱⁱ	(Anti-Rollback Inertia") ARB INERTIA (A1) is the Inertia/Gain setting when the drive is in ARB Mode. Setting this value too high may cause instability in the motor. If the motor growls or vibrates, lower this setting. Setting this parameter too low may cause excessive rollback. It is best to start this value at the same value of system inertia (see INERTIA (A1)). For more information, see ANTI-ROLLBACK on page 59	none ⁱⁱ	0.10 – 4.00 ⁱⁱ			N ⁱⁱ	Y ⁱⁱ
ARB Torque Time ⁱⁱ	(Anti-Rollback Torque Time") This parameter helps smooth out the torque requirement from the drive to the motor. With this set at zero, the drive will step up torque as required to hold the motor. The higher this value is, the smoother the torque transition to the motor, however, the more rollback may occur. For information on setting ARB, see ANTI-ROLLBACK on page 59	sec ⁱⁱ	0.000 – 1.000 ^{ji}	0.015 ⁱⁱ		V _{ii}	Y ⁱⁱ
Mains Dip Speed	(Mains Dip Speed Multiplier) This parameter sets the percentage of contract speed for the speed to be reduced when the drive goes into 'low voltage' mode. The Mains Dip function is enabled by the Mains Dip Enable (MAINS DIP ENA(C1)) parameter. When the drive goes into 'low voltage' mode, it reduces the speed by the percentage defined by this parameter. 'Low voltage' mode is defined as when the drive declares a UV alarm, which is defined by the Input line-to-line voltage (INPUT L-L VOLTS(A4)) parameter and the Undervoltage Alarm Level (UV ALARM LEVEL(A4)).	%	5.00 – 99.99	25.	00	Y	N

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

Name	Description	Units	Range	Default ENGLISH METRIC (U3) (U3)	Hidden Item	Lock out
Mspd Delay 1-4	(Multi-Step Speed Delay 1-4) Determines the recognition time delay for a defined multi-step speed command. For more information, see p. 61.		0.000 – 10.000	0.000	Y	Y
Mid Speed Lvl	(Mid Speed Level) This parameter sets the level/threshold for mid speed detection. This is only used to generate the mid pseed logic output. Units in percent of contract speed.	%	0.00 - 110.00	80.00	Y	Υ
Encdr Flt Sense ⁱⁱ	(Encoder Fault Sensitivity") Determines the percentage of voltage rise to occur before an Encoder Fault occurs due to voltage rise at the beginning of run. Units in percent of Rated Mtr Volts (A5)	% ⁱⁱ	10 – 100 ⁱⁱ	30 ⁱⁱ	N ⁱⁱ	Y ⁱⁱ
ARB" Deadband	For Magnetek personnel – This parameter sets the deadband around zero during ARB.	none ⁱⁱ	0 – 65535 ⁱⁱ	Oʻi	N ⁱⁱ	N ⁱⁱ
Abs Ref Offset ⁱⁱ	For Magnetek personnel – This parameter sets angular offset for absolute position reference signal that can be used for position feedback/ alignment testing.	deg ⁱⁱ	-180.00 – +180.00 ⁱⁱ	0.00 ⁱⁱ	Y ⁱⁱ	Nii
Cont Dwell Time ⁱⁱⁱ	(Contact Dwell Time ^{ill}) When external logic outputs are used to control the closing of the motor contactor, this parameter sets the amount of time delay from disabling the drive outputs following a stop until the motor contactor opens. And when external logic inputs are used to confirm the closing of the motor contactor, this parameter extends the time allowed for the contactor's auxiliary contacts to reach the user commanded state before a CONTACTOR FLT occurs.	sec ⁱⁱⁱ	0.00 - 5.00 ⁱⁱⁱ	0.50 ^{jii}	N ⁱⁱⁱ	N ⁱⁱⁱ

Table 8: Drive A1 Submenu

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

Detailed descriptions

FLUX WEAKENING¹

The HPV 900 Series 2 will calculate the rated flux level by using the following motor parameters:

- rated motor voltage
- rated motor current
- rated excitation frequency
- stator resistance
- stator and rotor leakage reactances

As motor speed increases, the drive will calculate the maximum available flux and decrease the flux automatically. This 'field weakening' will cause less torque to be available during this time.

In the HPV 900 Series 2, flux weakening begins before the motor reaches rated speed.

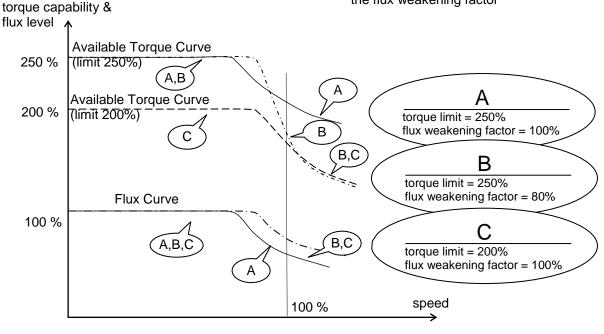
The drive can supply more than 100% current, since the CEMF is lower. Therefore, the drive can produce more than 100% of the motor's rated torque at the rated speed.

However, this increased torque capability requires more than 100% motor current to produce 100% torque at rated speed.

Flux Weakening Parameters
The following three HPV 900 Series 2
parameters affect both the available torque
curve and flux level curve:

- Motor Torque Limit
- Regenerative Mode Torque Limit
- Flux Weakening Factor

The highest of the two torque limits is used as the torque limit that defines the two curves. An example of the effects of the torque limit on the amount of flux weakening needed and the amount of torque available through the entire speed range is shown below.


By lowering the torque limit you can effectively reduce the amount of field weakening needed and reduce the amount of current needed by the motor at motor's rated speed. The tradeoff is you have lower over-all torque available.

In order to have more torque available at the lower speeds, the HPV 900 Series 2 has the Flux Weakening Factor parameter, which effectively reduces the amount of torque available only at the higher speeds. This will allow the HPV 900 Series 2 to have a higher flux level at the motor's rated speed and require less current to produce rated torque.

An example of the effects of the flux weakening factor on the amount of flux weakening needed and the amount of torque available through the entire speed range is also shown below

The maximum amount of torque available can be defined as the following:

- At low speeds... the torque limit parameters
- At high speeds... function of the torque limit parameters and the flux weakening factor

ⁱ Parameter accessible through CLOSED LOOP (U9) only

Parameter accessibly through **PM (U9)** only

Parameter accessible through OPEN LOOP(U9) only

GAIN CHNG LEVELi,ii

(Gain Change Level)

Note: This parameter is only accessible and usable when the drive is set for Closed Loop Operation.

When the gain control is set to internal, the drive will control the high/low gain switch. This parameter sets the speed reference level, when the drive is in 'low gain' mode.

The speed regulator high / low gain function was developed in response to high performance elevator requirements where the resonant nature of the elevator system interferes with the speed response of the drive.

When the speed response (gain) is set to high levels, the resonant characteristics created by the spring action of the elevator ropes can cause car vibration. To solve this problem, the speed regulator is set to a low enough response (gain) so that the resonant characteristics of the ropes are not excited.

This is accomplished by controlling the sensitivity or response of the speed regulator via the high / low gain switch and gain reduce multiplier.

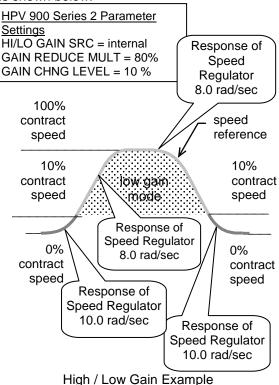
By using the gain reduce multiplier; the user can specify a lower response (gain) for the speed regulator when the drive is at higher speeds. The gain reduce multiplier (GAIN REDUCE MULT(A1)) tells the software how much lower, as a percentage, the speed regulator response (gain) should be.

The high / low gain switch determines when the HPV 900 Series 2 is in 'low gain' mode. In the 'low gain' mode, the gain reduce multiplier has an effect on the speed regulator's response (gain).

The drive allows for the high / low gain switch to be controlled either externally or internally. The high / low gain source parameter (HI/LO GAIN SRC) allows for this external or internal selection.

The high / low gain switch can be controlled externally by either:

- a logic input
- the serial channel


The high / low gain switch can also be controlled internal by:

 the gain change level parameter (GAIN CHNG LEVEL), which defines a percentage of contract speed

Parameter accessible through CLOSED LOOP (U9) only

With the drive set to internal control, the speed regulator will go into 'low gain' mode when the drive senses the motor is above a defined speed level. The defined speed level is determined by the gain change level parameter.

An example of internal high / low gain control is shown below.

Parameter accessibly through **PM (U9)** only

Parameter accessible through OPEN LOOP(U9) only

⁵⁶

RAMPED STOP TIME^{i,ii}

(Ramped Stop Time)

This parameter is only used by the torque ramp down stop function and sets the time to ramp torque from rated torque to zero. After the elevator lands and the brake is applied, the torque ramp down function allows the torque to ramp down at an even level. This helps eliminate the 'bump' felt upon landing caused by the torque being immediately dropped to zero.

A function unique to elevators involves the interaction between the motor torque and the mechanical brake that holds the elevator. Under full load conditions at the end of a run, if the brake is set and the motor torque is removed quickly, some brake slippage may occur. Therefore, the option of gradually reducing the motor torque is provided by the Torque Ramp Down Stop function.

Upon being enabled by the Ramped Stop Select Parameter (RAMPED STOP SEL(C1)), the torque command is linearly ramped to zero from the value that was present when the 'Ramp Down Enable' was selected.

The Ramp Down Enable has the following three possible sources:

- An input logic bit (EXTERNAL TB1)
- The run command removal
- The serial channel

The Ramp Down Enable Source parameter (RAMP DOWN EN SRC(C1)) is used to select one of the above options.

A method of providing the Ramp Down Enable would be with a logic signal (EXTERNAL TB1) that is dedicated to that function. The Ramp Down Enable would be asserted while the Run command is still present and remain there until the ramp is completed, after which the Run command would be removed.

The RUN LOGIC option to trigger the Ramp Down Enable from the Run command is provided. In this case, removal of the Run command enables the Ramp Down Stop Function.

The time it takes for the HPV 900 Series 2 to perform its ramped stop is determined by the Ramped Stop Time Parameter. The Ramped Stop Time parameter (RAMPED STOP TIME(A1)) selects the amount of time it would take for the drive to ramp from the rated torque to zero torque.

SPEED DEVIATION

(Speed Deviation)

The following two functions are available to indicate how the speed feedback is tracking the speed reference.

- Speed Deviation Low^{i,ii} indicates that the speed feedback is tracking the speed reference within a defined range.
- Speed Deviation High¹ indicates that the speed feedback is failing to properly track the speed reference.
- Speed Deviation Alm Levelⁱⁱ the point at which a Speed Deviation Alarm will be declared by the software.
- SPD DEV FLT LVLⁱⁱ the point at which a Speed Deviation Fault will be declared

The Speed Deviation Low function has the ability to set a configurable logic output (C3 Submenu). The logic output will be true, when the speed feedback is tracking the speed reference within a defined range around the speed reference for a defined period of time, see Figure 30. The defined range is determined by the Speed Deviation Low Level parameter (SPD DEV LO LEVEL(A1)) and the defined time is determined by the Speed Deviation Time parameter (SPD DEV TIME(A1)).

The Speed Deviation High function annunciates a Speed Deviation Alarm and has the ability to set a configurable logic output, see Logic Outputs C3 on page 96. The alarm will be annunciated and the logic output will be true, when the speed feedback is not properly tracking the speed reference and is outside a defined range around the speed reference. The defined range is determined by the Speed Deviation High Level parameter (SPD DEV HI LEVEL(A1)).

ⁱ Parameter accessible through CLOSED LOOP (U9) only

Parameter accessibly through **PM (U9)** only

Parameter accessible through OPEN LOOP(U9) only

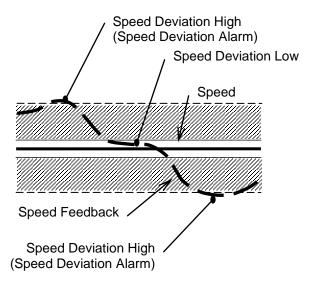


Figure 30: Speed Deviation Example for CLOSED LOOP (U9) i

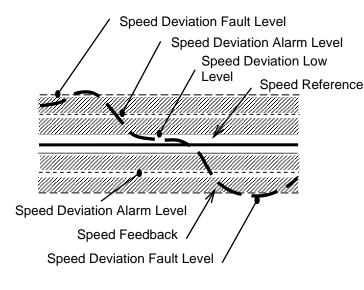
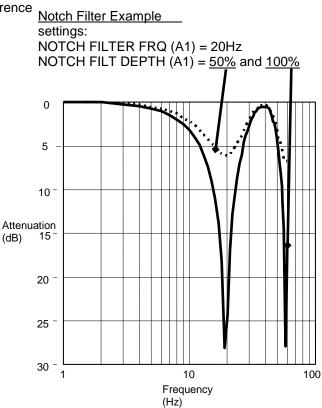


Figure 31: Speed Deviation Example for PM (U9)"


NOTCH FILTER FRQ i,ii

(Notch Filter Center Frequency)
This parameter determines the notch filter center frequency.

Notch Filter

Although originally created for gearless applications where elevator rope resonance is sometimes an issue, this filter affects the torque command output of the speed regulator and will filter out specific frequencies. By filtering a specific frequency, the speed regulator will avoid exciting a mechanical resonance if one exists at that frequency.

There is attenuation across a range of frequencies, not just at the set frequency, but also to a lesser degree. The filter starts attenuation at frequencies lower than the notch frequency set point. When the notch frequency is set to low values (less than 10 Hz), the filter can interfere with the desired response of the drive. This can be exhibited by minor increase in the rollback of the drive at start and some deterioration in the ability of the drive to track an s-curve reference. Generally, this would not be an issue if the notch frequency were set at or above 10 Hz.

i Parameter accessible through CLOSED LOOP (U9) only

Parameter accessibly through PM (U9) only

Parameter accessible through OPEN LOOP(U9) only

ANTI-ROLLBACK

Anti-Rollback is an independent function meant to calculate the amount of torque necessary to hold the car when load weighing is not available. Included in this application note are diagrams and procedures for ARB setup. See Figure 32 for help in adjusting and setting up ARB for a HPV900 S2 PM drive. **Please note:** ARB should be a final adjustment. All adjustments in tuning the drive for smooth car ride should occur before tuning ARB.

CAUTION

ARB cannot be used in conjunction with PreTorque. PRETORQUE SRC (C1) = NONE when ARB SELECT (C1) is set to ENABLE.

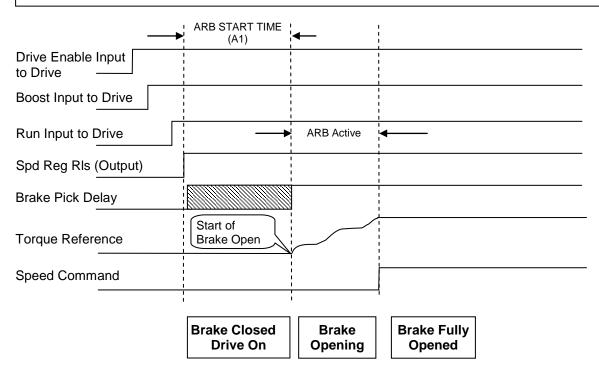


Figure 32: ARB Timing Diagram

- 1. Set car in middle of the hoistway so rollback will not cause the elevator to go into overhead while adjusting ARB.
- 2. Verify the following parameters are set as in the table below:

Parameter Name	Default Value	Initial Start Value
ARB SELECT (C1)	DISABLE	ENABLE
ARB START TIME (A1)	0.00s	0.00s
ARB DECAY RATE (A1)	0.990s	0.990s
ARB INERTIA (A1)	1.00s	Set to Inertia (A1)
ARB TORQUE TIME	0.01s	0.01s

- Start by giving the car a zero speed command with full load, worst case scenario.
- 4. Once Anti-Rollback has been enabled, five parameters will help adjust the software to work best in the application

ARB START TIME (A1) is the dwell time between the logic output SPD REG RLS and the brake starting to pick. ARB will not become activated until ARB START TIME (A1) has occurred. Setting this value too long will cause major rollback to occur. Setting this value too short may cause issues with the drive reacting to noise on the speed feedback channels. Adjust the ARB START TIME (A1) to begin just as the brake is lifting.

ALARM! ARB START ERROR

If this alarm is displayed, it is an indication that ARB saw sheave movement <u>before</u> ARB was active. Decrease the value of ARB START TIME (A1) in this instance.

Begin by adjusting ARB START TIME (A1).
Below are some expected results based on timing of this parameter

ARB START TIME
(A1)

Spd Reg Rls (Output)

Sheave Movement

Brake Start Opening Point

Figure 33: ARB Start Time set too long

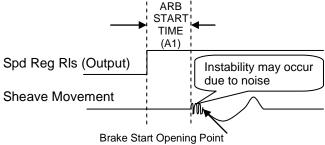


Figure 34: ARB Start Time set too short

Once ARB Start Time has been adjusted to occur right when the brake is beginning to open, the next step is to adjust the ARB INERTIA

ARB INERTIA (A1) is the Inertia/Gain setting when the drive is in ARB Mode. Setting this value too high may cause instability in the motor. If the motor growls or vibrates, lower this setting. Setting this parameter too low may cause excessive rollback. It is best to start this value at same value of system inertia (see INERTIA (A1)).

Figure 35: ARB INERTIA (A1) too high

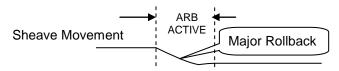
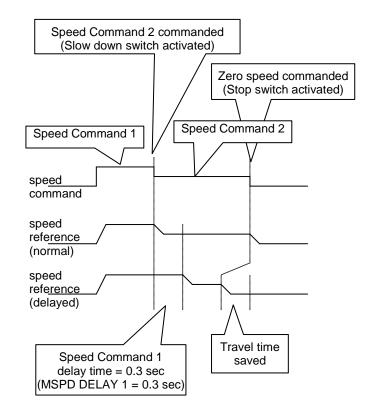


Figure 36: ARB INERTIA (A1) too low

ARB TORQUE TIME (A1) determines the amount of ramp the torque will receive when the brake is lifted. The higher the number, the smoother the torque, however, this may cause more rollback.

ARB DECAY RATE (A1) determines the slew rate for torque while in ARB mode. The higher the value, the more torque change may occur while the lower the value, the less torque change may occur. Setting this value to the maximum 0.99 indicates limited decay. The faster the brake lifts, the higher this value should be.


- 5. After the ARB parameters have been adjusted, set the car controller up to give the drive a non-zero speed command. The drive will exit ARB mode when it see a non-zero speed command. Adjust when this non-zero speed command to occur directly after the brake has fully lifted.
- 6. For advanced setup, use an analog output (gain of 1) set to ARB STATE to help determine timing. Program one analog output to ARB STATE (C4) and the other analog output to TORQUE REF (C4) to help determine if ARB INERTIA (A1), ARB TORQUE TIME (A1) and ARB DECAY RATE (A1) are optimized.

MSPD DELAY 1-4

(Multi-step Speed Delay)

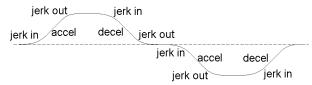
These four parameters determine the recognition time delay for a multi-step speed commands defined by MLT-SPD TO DLY1-4 (C1) parameters.

When setting up an elevator, slow-down and stop switches are set at fixed locations in the shaft. Once the drive is tuned, it might require the user to move the switches in the shaft in order to minimize the time spent at leveling speed. Under "normal" operation, the drive speed reference follows the speed command. By configuring for "delayed" operation and setting speed command 1 for a delay (MLT-SPD TO DLY 1 = MSPD 1), the recognition of the speed command change from speed command 1 to any other speed command (in this case speed command 2) will be delayed by the setting of MSPD DELAY 1 (A1) parameter.

S-Curves A2 Submenu

Detailed descriptions

The HPV 900 Series 2 speed command is passed through an internal S-curve in order to produce the speed reference. In general, the S curve function takes an arbitrary speed command and generates a speed reference subject to the conditions that the maximum accel, decel and jerk rates not be exceeded. The speed command is typically the target speed that the reference is headed to.


Note: If the car controller is feeding the drive a speed profile including s-curves, the s-curve settings on the drive need to be placed out of the way. In those cases, set ACCEL RATE 0 and DECEL RATE 0 to the maximum (7.99 $\rm ft/s^2$ or 3.999 m/ $\rm s^2$) and set ACCEL JERK IN 0, ACCEL JERK OUT 0, DECEL JERK IN 0, and DECEL JERK OUT 0 to the minimum (0.0 $\rm ft/ \, s^2$ or 0.00 m/ $\rm s^2$).

Below shows the six parameters associated with an S-Curve data set:

- Accel- Maximum allowed acceleration rate (ft/s² or m/s²)
- Decel Maximum allowed deceleration rate (ft/s² or m/s²)
- Accel Jerk In Maximum allowed change in acceleration towards Accel (ft/s³ or m/s³)
- Accel Jerk Out Maximum allowed change in acceleration from Accel (ft/s³ or m/s³)
- Decel Jerk In Maximum allowed change in deceleration towards Decel (ft/s³ or m/s³)
- Decel Jerk Out Maximum allowed change in deceleration from Decel (ft/s³ or m/s³)

The S-curves are specified by four parameters: acceleration rate (ft/s² or m/s²), deceleration rate (ft/s² or m/s²), leveling jerk rate (ft/s³ or m/s³), and jerk rate (ft/s³ or m/s³).

Since an adjustable jerk rate is helpful for smooth landings, the jerk rates are split for ease in elevator fine-tuning. The jerk rate parameters specify: acceleration from the floor (ACCEL JERK IN), jerk out of acceleration (ACCEL JERK OUT), jerk into deceleration (DECEL JERK IN), and the leveling into the floor (DECEL JERK OUT).

S-Curve

There are four S-curve patterns available in the drive and each S-curve is customized by six parameters:

Parameters for S-curve-0 (SC0):

- ACCEL RATE 0, DECEL RATE 0, ACCEL JERK IN 0, ACCEL JERK OUT 0, DECEL JERK IN 0, and DECEL JERK OUT 0
- Parameters for S-curve-1 (SC1):
- ACCEL RATE 1, DECEL RATE 1, ACCEL JERK IN 1, ACCEL JERK OUT 1, DECEL JERK IN 1, and DECEL JERK OUT 1

Parameters for S-curve-2 (SC2):

 ACCEL RATE 2, DECEL RATE 2, ACCEL JERK IN 2, ACCEL JERK OUT 2, DECEL JERK IN 2, DECEL JERK OUT 2

Parameters for S-curve-3 (SC3):

 ACCEL RATE 3, DECEL RATE 3, ACCEL JERK IN 3, ACCEL JERK OUT 3, DECEL JERK IN 3, DECEL JERK OUT 3

S-Curve Pattern Selection

The default S-curve pattern is S-curve-0 (SC0). To make the other patterns available, the user must assign S-CURVE SEL 0 and/or S-CURVE SEL 1 as logic input(s). The logic input(s) can then be used to select one of the S-curve patterns, as follows:

Logic Inputs Assigned	S-curves <u>Available</u>
None	SC0 only
SEL 0 only	SC0 or SC1
SEL 1 only	SC0 or SC2
SEL 0 & SEL 1	SC0, SC1, SC2 or SC3

S-curve Availability

logi	c input	
S-C	URVE	S-curve
<u>SEL 1</u>	<u>SEL 0</u>	<u>selected</u>
0	0	SCO
0	1	SC1
1	0	SC2
1	1	SC3
	Selecting S-co	urves

The jerk rates can be turned off by setting the jerk rates to zero.

The accel / decel rates can also be turned off by setting them to zero. But, setting the accel / decel rates to zero is not recommended.

Parameter	Description	Units	Range	Default	Hidden item	Run lock out
Accel Rate 0	Acceleration rate limit	ft/s ² m/s ²	0.00 - 7.99 0.000 - 3.999	3.00 0.800	N	Υ
Decel Rate 0	Deceleration rate limit	ft/s² m/s²	0.00 - 7.99 0.000 - 3.999	3.00 0.800	N	Υ
Accel Jerk In 0	Rate of increase of acceleration, up to ACCEL RATE, when increasing elevator speed	ft/s ³	0.0 - 29.9 0.00 - 9.99	8.0 0.60	N	Υ
Accel Jerk Out 0	Rate of decrease of acceleration to zero when approaching contract elevator speed	ft/s ³	0.0 - 29.9 0.00 - 9.99	8.0	N	Υ
Decel Jerk In 0	Rate of increase of deceleration, up to DECEL RATE, when decreasing elevator speed	ft/s ³	0.0 - 29.9 0.00 - 9.99	8.0 0.60	N	Υ
Decel Jerk Out 0	Rate of decrease of deceleration to zero when	ft/s ³	0.0 – 29.9	8.0	N	Υ
Accel Rate 1	slowing the elevator to leveling speed Acceleration rate limit	ft/s ²	0.00 - 9.99 0.00 - 7.99	3.00	N	Υ
Decel Rate 1	Deceleration rate limit	m/s ² ft/s ² m/s ²	0.000 - 3.999 0.00 - 7.99 0.000 - 3.999	3.00 0.800	N	Υ
Accel Jerk In 1	Rate of increase of acceleration, up to ACCEL RATE, when increasing elevator speed	ft/s ³	0.0 - 29.9 0.00 - 9.99	8.0 0.60	N	Υ
Accel Jerk Out 1	Rate of decrease of acceleration to zero when approaching contract elevator speed	ft/s ³	0.0 - 29.9 0.00 - 9.99	8.0 0.60	N	Υ
Decel Jerk In 1	Rate of increase of deceleration, up to DECEL RATE, when decreasing elevator speed	ft/s ³	0.0 - 29.9 0.00 - 9.99	8.0 0.60	N	Υ
Decel Jerk Out 1	Rate of decrease of deceleration to zero when slowing the elevator to leveling speed	ft/s ³	0.0 - 29.9 0.00 - 9.99	8.0 0.60	N	Υ
Accel Rate 2	Acceleration rate limit	ft/s ²	0.00 - 7.99 0.000 - 3.999	3.00 0.800	N	Υ
Decel Rate 2	Deceleration rate limit	ft/s² m/s²	0.00 - 7.99 0.000 - 3.999	3.00 0.800	N	Υ
Accel Jerk In 2	Rate of increase of acceleration, up to ACCEL RATE, when increasing elevator speed	ft/s ³ m/s ³	0.0 - 29.9 0.00 - 9.99	8.0 0.60	N	Υ
Accel Jerk Out 2	Rate of decrease of acceleration to zero when approaching contract elevator speed	ft/s ³ m/s ³	0.0 - 29.9 0.00 - 9.99	8.0 0.60	N	Υ
Decel Jerk In 2	Rate of increase of deceleration, up to DECEL RATE, when decreasing elevator speed	ft/s ³ m/s ³	0.0 - 29.9 0.00 - 9.99	8.0 0.60	N	Υ
Decel Jerk Out 2	Rate of decrease of deceleration to zero when slowing the elevator to leveling speed	ft/s ³ m/s ³	0.0 - 29.9 0.00 - 9.99	8.0 0.60	N	Υ
Accel Rate 3	Acceleration rate limit	ft/s² m/s²	0.00 - 7.99 0.000 - 3.999	3.00 0.800	N	Υ
Decel Rate 3	Deceleration rate limit	ft/s² m/s²	0.00 - 7.99 0.000 - 3.999	3.00 0.800	N	Υ
Accel Jerk In 3	Rate of increase of acceleration, up to ACCEL RATE, when increasing elevator speed	ft/s ³ m/s ³	0.0 - 29.9 0.00 - 9.99	8.0 0.60	N	Υ
Accel Jerk Out 3	Rate of decrease of acceleration to zero when approaching contract elevator speed	ft/s ³ m/s ³	0.0 - 29.9 0.00 - 9.99	8.0 0.60	N	Υ
Decel Jerk In 3	Rate of increase of deceleration, up to DECEL RATE, when decreasing elevator speed	ft/s ³ m/s ³	0.0 - 29.9 0.00 - 9.99	8.0 0.60	N	Υ
Decel Jerk Out 3	Rate of decrease of deceleration to zero when slowing the elevator to leveling speed	ft/s ³ m/s ³	0.0 - 29.9 0.00 - 9.99	8.0 0.60	N	Υ

Table 9: S-Curve A2 Submenu

Multistep Ref A3 Submenu

Detailed descriptions

The multi-step speed reference function is one possible way for the drive to accept speed command. To use this function, the user can enter up to fifteen speed commands (CMD1 – CMD15) and assign four logic inputs as speed command selections.

Note: CMD0 is reserved for zero speed, therefore is not accessible to the user for programming.

During operation, the user will encode a binary signal on the four logic inputs that determines which speed command the software should use. The user need not use all four speed command selection bits; if no logic input is specified for one of the selection bits, that bit is always zero. For instance, if no logic input is specified for the most significant bit (B3), that bit will be zero and the user can select from CMD0 - CMD7.

IMPORTANT

Since these speed commands are selected with external contacts, a new command selection must be present for 50ms before it is recognized.

		<u>input</u>		multi-step
	STEF	PREF		speed
<u>B3</u>	<u>B2</u>	<u>B1</u>	<u>B0</u>	<u>command</u>
0	0	0	0	CMD0
0	0	0	1	CMD1
0	0	1	0	CMD2
0	0	1	1	CMD3
0	1	0	0	CMD4
0	1	0	1	CMD5
0	1	1	0	CMD6
0	1	1	1	CMD7
1	0	0	0	CMD8
1	0	0	1	CMD9
1	0	1	0	CMD10
1	0	1	1	CMD11
1	1	0	0	CMD12
1	1	0	1	CMD13
1	1	1	0	CMD14
1	1	1	1	CMD15

Multi-step Selection

An example of the use of the multi-step command is as follows:

- All speed commands are positive.
- CMD0 specifies zero speed.
- CMD1 specifies leveling speed.
- CMD2 specifies inspection speed.
- CMD3 specifies an overspeed limit.
- CMD4 CMD15 specify different top speeds depending on number of floors in the run.

For typical use, the user will have all speed commands to be positive, in which case a logic input s (UP/DWN or RUNUP & RUNDOWN) must also be specified to determine up or down direction. It is possible for the user to specify both positive and negative values for CMD1 - CMD15, in which case logic input bit(s) are not needed.

Parameter	Description	Units	Range	Default	Hidden item	Run lock out
Speed Command 1	Multi-step speed	ft/min	-3000.0 - +3000.0	0.0	N	Y
Speed Command 1	command #1	m/sec	-16.000 - +16.000	0.000	l IN	Y
Speed Command 2	Multi-step speed	ft/min -3000.0 - +3000.0 0.0		N	Υ	
Speed Command 2	command #2	m/sec	-16.000 - +16.000	0.000	l IN	ľ
Speed Command 3	Multi-step speed	ft/min	-3000.0 - +3000.0	0.0	N	Υ
Speed Command 3	command #3	m/sec	-16.000 - +16.000	0.000	IN	ī
Speed Command 4	Multi-step speed	ft/min	-3000.0 - +3000.0	0.0	N	Υ
Speed Command 4	command #4	m/sec	-16.000 – +16.000	0.000	l IN	ľ
Speed Command 5	Multi-step speed	ft/min	-3000.0 - +3000.0	0.0	N	Υ
Speed Command 5	command #5	m/sec	-16.000 - +16.000	0.000	l N	Y
Speed Command 6	Multi-step speed	ft/min	-3000.0 - +3000.0	0.0	N	V
Speed Command 6	command #6	m/sec	-16.000 - +16.000	0.000	N	Y
Speed Command 7	Multi-step speed	ft/min	-3000.0 - +3000.0	0.0	N	Υ
Speed Command 7	command #7	m/sec	-16.000 - +16.000	0.000		ľ
Speed Command 8	Multi-step speed	ft/min	-3000.0 - +3000.0	0.0	N	Υ
Speed Command o	command #8	m/sec	-16.000 - +16.000	0.000] 'N	ı
Speed Command 9	Multi-step speed	ft/min	-3000.0 - +3000.0	0.0	N	Υ
Speed Command 9	command #9	m/sec	-16.000 - +16.000	0.000	IN	'
Speed Command 10	Multi-step speed	ft/min	-3000.0 - +3000.0	0.0	N	Y
Speed Command 10	command #10	m/sec	-16.000 - +16.000	0.000	IN	1
Speed Command 11	Multi-step speed	ft/min	-3000.0 - +3000.0	0.0	N	Υ
Speed Command 11	command #11	m/sec	-16.000 - +16.000	0.000	IN	1
Speed Command 12	Multi-step speed	ft/min	-3000.0 - +3000.0	0.0	N	Υ
Speed Command 12	command #12	m/sec	-16.000 - +16.000	0.000	IN	1
Speed Command 13	Multi-step speed	ft/min	-3000.0 - +3000.0	0.0	NI NI	Υ
Speed Communic 13	command #13	m/sec	-16.000 - +16.000	0.000	N	r
Speed Command 14	Multi-step speed	ft/min	-3000.0 - +3000.0	0.0	N	Υ
opeeu Commanu 14	command #14	m/sec	-16.000 - +16.000	0.000	IN	r
Speed Command 15	Multi-step speed	ft/min	-3000.0 - +3000.0	0.0	NI NI	V
Speed Command 15	command #15	m/sec	-16.000 - +16.000	0.000	N	Y

Table 10: Multistep Ref A3 Submenu

Power Convert A4 Submenu

NOTE: When the word Hidden appears above a parameter description, it indicates that its appearance in the list is controlled by the HIDDEN ITEMS setting. See details on page 108.

NOTE: When the word Lockout appears above a parameter description, the parameter cannot be changed when the drive is in the RUN mode.

				Default		Hidden	Lock
Parameter	Description	Units	Range	ENGLISH (U3)	METRIC (U3)	item	out
Input L-L Volts	(Input Line to Line Voltage) This parameter sets the input voltage or AC line input voltage to the drive.	Vrms	110 – 480	0		N	N
UV Alarm Level	(Undervoltage Alarm Level) This parameter sets the level (as a percentage of the INPUT L-L VOLTS) at which an under voltage alarm will be declared. Units in percent of nominal bus.	%	50 – 99	90	80	Y	Z
UV Fault Level	(Undervoltage Fault Level) This parameter sets the level (as a percentage of the INPUT L-L VOLTS) at which an under voltage fault will occur. Units in percent of nominal bus.	%	50 – 99	80	70	Y	N
PWM Frequency	(Carrier Frequency) This parameter sets the PWM or 'carrier' frequency of the drive. The carrier is defaulted at 10.0 kHz, which is well out of audible range. The drive does not derate when the PWM frequency is set to 10kHz or below. For more information on derating see page 14.	kHz	2.5 – 16.0	10.0		N	N
Extern Reactance	(External Reactance) This parameter sets the externally connected reactance (as a percentage of base impedance) between the drive and the motor. Units in percent of reactance.	%	0.0 – 10.0	0	.0	Y	N
ld Reg Diff Gain	(Current Regulator Differential Gain for Flux Generation) The differential gain for the current regulator flux generation. This parameter is meant for advanced	none	0.00 – 1.20	1.0	0 ^{i,;;;}	Y	N
	operation; therefore, the parameter will rarely need to be changed from the default value.			0.0	00"		
ld Reg Prop	(Current Regulator Proportional Gain for Flux Generation) The proportional gain for the current regulator flux generation. This	none	0.45 2.00	0.3	0 ^{i,iii}	V	N
Gain	parameter is meant for advanced operation; therefore, the parameter will rarely need to be changed from the default value.	none	0.15 – 3.00	0.7	'00"	Y	N

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP**(**U9)** Operation only

				Default		I III al al a sa	1 1-
Parameter	Description	Units	Range	ENGLISH (U3)	METRIC (U3)	Hidden item	Lock out
ld Reg Intg Gain [#]	(Current Regulator Integral Gain for Flux Generation ⁱⁱ) The integral gain for the current regulator flux generation. This parameter is meant for advanced operation, therefore, the parameter will rarely need to be changed from the default value.	none ⁱⁱ	0.00 - 2.00 ⁱⁱ	1.	00 ⁱⁱ	N ⁱⁱ	N ⁱⁱ
lq Reg Diff Gain	(Current Regulator Differential Gain for Torque Generation) The differential gain for the current regulation of motor torque. This parameter is meant for advanced operation; therefore, the parameter will rarely need to be changed from the default value.	none	0.00 – 1.20		0 ^{i,}		N
lq Reg Prop	(Current Regulator Proportional Gain for Torque Generation) The proportional gain for the current regulator torque generation. This	none	0.15 – 3.00	0.3	0.30 ^{i,iii}	Y	N
Gain	parameter is meant for advanced operation; therefore, the parameter will rarely need to be changed from the default value.	none	0.10	0.700 "			
lq Reg Intg Gain ⁱⁱ	(Current Regulator Integral Gain for Torque Generation ⁱⁱ)The integral gain for the current regulator torque generation. This parameter is meant for advanced operation, therefore, the parameter will rarely need to be changed from the default value.	none ⁱⁱ	0.00 - 2.00 ⁱⁱ	1.0	00 ⁱⁱ	V ⁴ii	N ⁱⁱ
Fine Tune Ofst ⁱⁱ	This parameter is used to manually offset the absolute position feedback for testing purposes. This parameter is only valid when ENCODER SELECT (C1) = ENDAT. WARNING: Changing this parameter can lead to motor runaway. It should always be set to zero for normal operation. Locked by ENGR PARM LOCK (C1).	deg ⁱⁱ	-75.00 — +75.00 ⁱⁱ	0.0	00 ^{ji}	Y ⁱⁱ	N ⁱⁱ
ld Ref Threshld ⁱⁱ	For Magnetek personnel — This parameter is used to manually set non-zero current reference for flux production. This needs to be zero for normal operation as flux in PM motors is produced by permanent magnets. Locked by ENGR PARM LOCK (C1).	none ⁱⁱ	0.00 - 0.20 ⁱⁱ	0.0	00 [#]	Y ⁱⁱ	N ⁱⁱ

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

				Default		Hidden	Lock
Parameter	Description	Units	Range	ENGLISH METRIC (U3) (U3)		item	out
Flux Weaken Rate ⁱⁱ	(Flux Weakening Slew Rate") This parameter determines the slew rate of the flux weakening controls. The higher this parameter is, the faster flux weakening will respond to the voltage limit. Setting this parameter to zero will disable it. For more information, see Flux Weakening at Voltage Limits on page 71. Locked by ENGR PARM LOCK (C1).	none ⁱⁱ	0.000 — 1.000 ⁱⁱ		000 ⁱⁱ	Y ⁱⁱ	N ⁱⁱ
Flux Weaken Lev ⁱⁱ	(Flux Weakening Level") This parameter determines how close to the voltage limit the drive will get before it will flux weaken. For more information, see Flux Weakening at Voltage Limits on page 71. Locked by ENGR PARM LOCK (C1).	none ⁱⁱ	0.70 – 1.00 ⁱⁱ	0.1	95 ⁱⁱ	Y ⁱⁱ	N ⁱⁱ
Align VIt Factor ⁱⁱ	(Open Loop Alignment Voltage Reference Scaling Factor ⁱⁱ) This parameter is used to scale open loop voltage reference at the initial phase of the open loop alignment.	none ⁱⁱ	0.05 – 1.99 ⁱⁱ	1.0	00 ⁱⁱ	N ⁱⁱ	N ⁱⁱ
Brake Opn Flt Lv ⁱⁱ	(Brake Fault Level") This parameter determines the level of speed feedback the drive sees before declaring the fault BRAKE IS OPEN. This is only valid during either the Auto-Tune or Auto Alignment procedures. Units are in percent of	% ⁱⁱ	0.0 – 20.0 ⁱⁱ	2.	O ⁱⁱ	N"	N ⁱⁱ
ld Dist Loop Gn ⁱⁱⁱ	contract speed. (Distortion Loop Gain on Flux Current Generation ⁱⁱⁱ) This parameter is meant for advanced operation; therefore, the parameter will rarely need to be changed from the default value.	none ⁱⁱⁱ	0.00 - 1.50 ⁱⁱⁱ	0.3	50 ^{III}	Y ^{jji}	N ⁱⁱⁱ
lq Dist Loop Gn ⁱⁱⁱ	(Distortion Loop Gain on Torque Current Generation ⁱⁱⁱ) This parameter is meant for advanced operation; therefore, the parameter will rarely need to be changed from the default value.	none ⁱⁱⁱ	0.00 – 1.50 ⁱⁱⁱ	0.3	30 ⁱⁱⁱ	Y ⁱⁱⁱ	N ⁱⁱⁱ
ld Dist Loop Fc ⁱⁱⁱ	(Corner Frequency on Distortion Loop for Flux Current ⁱⁱ) This parameter is the high-pass corner frequency on the distortion loop regulator for flux current. This parameter is meant for advanced operation; therefore, the parameter will rarely need to be changed from the default value.	sec ⁱⁱⁱ	0.1 – 30.0 ⁱⁱⁱ	5.	o ⁱⁱⁱ	Y ⁱⁱⁱ	N ⁱⁱⁱ

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

				Default		Hidden	Lock
Parameter	Description	Units	Range	ENGLISH (U3)	METRIC (U3)	item	out
lq Dist Loop Fc ⁱⁱⁱ	(Corner Frequency on Distortion Loop for Torque Current ⁱⁱⁱ) The parameter is the high-pass corner frequency on the distortion loop regulator for torque current. This parameter is meant for advanced operation; therefore, the parameter will rarely need to be changed from the default value.	sec ⁱⁱⁱ	0.1 – 30.0 ⁱⁱⁱ		O ⁱⁱⁱ	Y ⁱⁱⁱ	N'''
l Reg Cross Freq ⁱⁱⁱ	(Current Regulator Crossover Frequency ^{jii}) Transition frequency between control at low frequency and higher frequency. This parameter is meant for advanced operation; therefore, the parameter will rarely need to be changed from the default value. Units in percent of DC Stop Freq.	% ⁱⁱⁱ	0.0 – 300.0 ⁱⁱⁱ	100	0.0 ⁱⁱⁱ	Y ⁱⁱⁱ	N ⁱⁱⁱ
Dist Lp Off Freq ⁱⁱⁱ	(Distortion Loop Rolloff Frequency)") The frequency at which the distortion loops begins to be phased out. This parameter is meant for advanced operation; therefore, the parameter will rarely need to be changed from the default value.	Hz ⁱⁱⁱ	0.0 – 99.9 ⁱⁱⁱ	60	.O ⁱⁱⁱ	Y ⁱⁱⁱ	N^{iii}
ILimit Integ Gn ⁱⁱⁱ	(Current Limit Integral Gain ^{IIII}) The Stall Prevention (Current Limit) function's integral gain. This determines the response of the function. Stall prevention causes the drive to deviate from the commanded speed to limit motor current to a user set level. When the motoring current limit is reached (MTR TORQUE LIMIT(A1)), the stall prevention function will reduce speed. When the regenerating current limit is reached (REGEN TORQ LIMIT(A1)), the stall prevention function will increase speed in an effort to shed load. Stall prevention can optionally be disabled in regeneration by the Stall Prevention Regen Enable (STALLP REGEN ENA(C1)) parameter.	none ⁱⁱⁱ	0.00 – 9.99 ^{jii}	1.0	oo ⁱⁱⁱ	N ⁱⁱⁱ	N ⁱⁱⁱ

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

Pwr Convert A4 Submenu

	Description		Range	Default		Hidden	Lock
Parameter		Units		ENGLISH (U3)	METRIC (U3)	item	out
Hunt Prev Gain ⁱⁱⁱ	(Hunt Prevent Gain)") Determines the response to changes in torque (torque slew rate gain). Increasing the gain slows drive torque response (more dampening). Be cautious not to set the parameter too high or the drive will become unstable. NOTE: it is usually best to leave this parameter set at the default of 1.0 second. Hunting can occur following a load	none ⁱⁱⁱ	$0.00-4.00^{iii}$		1.00 ⁱⁱⁱ		N ⁱⁱⁱ
	change, but it may also occur when the motor is settling into a steady speed. Hunting may cause the motor to vibrate at lower speeds. The Hunt Prevention function will help to reduce or suppress this oscillation.						
Hunt Prev	(Hunt Prevention Time Constant") Hunt prevention filter time constant. Adjusted for hunt prevention response and stability. By increasing the value of the parameter, the response time of the hunt prevention function will become slower. Reducing the parameter to a lower value makes the hunt prevention function respond more quickly. Note: the function works better with a lower time constant.	sec ⁱⁱⁱ	0.001 —	0,2	oo ⁱⁱⁱ	N ⁱⁱⁱ	N ⁱⁱⁱ
Time"'	better with a lower time constant. NOTE: it is usually best to leave this parameter set at the default of 0.2 seconds. Hunting can occur following a load change, but it may also occur when the motor is settling into a steady speed. Hunting may cause the motor to vibrate at lower speeds. The Hunt Prevention function will help to reduce or suppress this oscillation.	300	7.000 ⁱⁱⁱ	0.2		74	7
Switching Delay ⁱⁱⁱ	(Transistor Switching Delay ^{III}) This parameter is hardware dependent and should not be adjusted.	sec ⁱⁱⁱ	0 - 10 ⁱⁱⁱ	O	jii	Y ⁱⁱⁱ	N ⁱⁱⁱ
Vc Correction ⁱⁱⁱ	(Conduction Voltage Correction") This parameter is hardware dependent and should not be adjusted.	V ⁱⁱⁱ	0.00 - 5.00 ⁱⁱⁱ	2.	50 ⁱⁱⁱ	Y ⁱⁱⁱ	N ⁱⁱⁱ
Load Sense Time	(Load Sense Time) Load Sense Time is only used when SERIAL MODE (C1) = DCP3 or DCP4.	Sec	0.00 – 1.50	0.	00	N	N

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP**(**U9)** Operation only

Parameter	Description	Units	Range	Default ENGLISH METRIC (U3) (U3)	Hidden item	Lock out
Autoalign Volts ⁱⁱ	(Auto Alignment Voltage") This parameter is used during Auto Alignment. This parameter should only be adjusted if a SPD DEV FAULT following an auto alignment. Default value is 10.	% ⁱⁱ	5 – 20 ⁱⁱ	10 ⁱⁱ	N"	N ⁱⁱ
Fan Off Delay	(Fan Off Delay) This parameter sets the amount of time the drive will wait after the run has been removed until the fans turn off. Setting this value to maximum of 999 indicates the fans will never shut off.	sec	0 – 999	60	N	Z

Table 11: Power Convert A4 Submenu

FLUX WEAKENING" AT VOLTAGE LIMITS

Flux Weakening Parameters The following HPV 900 S2 PM parameters affect flux weakening:

- Flux Weakening Slew (FLUX WEAKEN RATE (A4))
- Flux Weakening Level (FLUX WEAKEN LEV (A4))

Permanent magnets are used to generate a constant flux linkage in PM synchronous motors. Under normal operating conditions, the PM drive only controls torque production as the machine is permanently excited. Rarely, is there a need to reduce the flux level in a PM motor.

However, with an elevator application, the need may arise to reduce the flux level if the input voltage to the drive is relatively low in comparison to the maximum motor voltage. The drive is capable of supplying more current with the same terminal voltage as the counter electromotive force (CEMF) is lower at a given speed.

In order to weaken the flux in a PM motor, an additional current component is injected and the current required to produce certain torque will increase. This increased current demand will reduce the efficiency of the system and increase thermal stress on the drive and the motor. For these reasons, flux weakening should be used if only absolutely necessary. This feature is disabled by default (FLUX WEAKEN RATE (A4) = 0).

The parameter Flux Weakening Rate (FLUX WEAKEN RATE, A4) is used to set how fast flux weakening occurs when the output voltage reaches the limit. Set this to a minimum value that ensures successful acceleration of the fully loaded car for more gradual flux weakening.

With flux weakening enabled, the HPV 900 S2 PM will automatically adjust the current to keep the output voltage from reaching the voltage limits. The HPV 900 S2 PM can begin flux weakening before the motor reaches the voltage limit or at the very limit. The limit depends upon the setting of FLUX WEAKEN LEV (A4). The sooner the flux weakening begins, the more voltage margin is available to compensate transient disturbances. However, the set point must be set higher than rated motor voltage such that the full flux (NO flux weakening) is available for cruising speed.

The flux weakening can also lead to an abrupt reduction of torque producing capability of the motor. Different motors have different flux weakening capabilities. In some cases the maximum torque increase cannot be achieved. Even then, it may be worth using flux weakening as it allows the drive to accelerate to full speed on a compromised curve without declaring current regulator fault.

When the drive is flux weakening, the monitor function D-CURR REFERENCE (D2) will be negative. It is advisable to verify the reference is zero when the car is running fully loaded at constant speed.

ⁱ Parameter accessible through **CLOSED LOOP (U9)** Operation only

Parameter accessibly through PM (U9) Operation only

Parameter accessible through OPEN LOOP(U9) Operation only

Motor A5 Submenu

This sub-menu contains parameters, which are programmed with information about the motor being controlled by the drive.

IMPORTANT

The parameters in this sub-menu defined the motor model, which is very important for proper operation. Ensure that the data is accurate.

NOTE: When the word *Hidden* appears above a parameter description, it indicates that its appearance in the list is controlled by the HIDDEN ITEMS setting. *See details on page* 108

NOTE: When the word *Lockout* appears above a parameter description, the parameter cannot be changed when the drive is in the RUN mode.

						Def	ault	Hidden	Run
Parameter	Description			Units	Range	ENGLISH		Item	lock
						(U3)	(U3)	iteiii	out
	(Motor Identification allows for the select parameters. A listin with its corresponding parameters is sown	tion of mo ng of each ing set of r below.	tor Motor ID motor						
	motor parameter		tor ID						
		4 pole dflt ^{i,iii}	6 pole dflt ^{i,iii}						
	Rated Mtr Power	0.0 HP	0.0 HP						
	Rated Mtr Volts	0.0 V	0.0 V						
	Rated Excit Freq	0.0 Hz	0.0 Hz						
	Rated Motor Curr	0.0 A	0.0 A						
	Motor Poles	0	0						
	Rated Mtr Speed	0.0 rpm	0.0 rpm						
	% No Load Curr	35.00%	45.00%		– 4 pole dflt ^{i,///}				
	Stator Leakage X	9.00%	7.50%			4 POLE	4 POLE		
MataulD	Rotor Leakage X	9.00%	7.50%		- 4 pole dflt',"	DFLT i,///	DFLT ^{i,iii}	Ni	Y ⁱ
Motor ID	Stator Resist	1.50%	1.50%	none	– 6 pole dflt ^{i,iii} – <i>PM dfltⁱⁱ</i>	PM	PM	IN	Y
	Motor Iron Loss	0.50%	0.50%		- FW GIIL	DfIt ⁱⁱ	DfIt ⁱⁱ		
	Motor Mech Loss	1.00%	1.00%						
	Flux Sat Break	75%	75%						
	Flux Sat Slope 1	0%	0%						
	Flux Sat Slope 2	50%	50%						
	Table 12: Mo	otor ID De	efaults						
	NOTE: The default to have the motor n entered in the approparameters. The o	ameplate opriate mo	information otor						
	are already set to n								
	Whichever Motor IE Tune Procedure sh obtain maximum m Using the Adaptive Auto Tune on page	ould be fo otor perfor Tune on p	llowed to rmance. Se page 135 or	ее					
	Using the Adaptive	Tune on p 148 to Ol	page 135 or btain						

¹ Parameter accessible through **CLOSED LOOP (U9)** Operation only

Parameter accessible through OPEN LOOP(U9) Operation only

Parameter accessibly through **PM (U9)** Operation only

				Default		الانظاظامات	Run
Parameter	Description	Units	Range	ENGLISH (U3)	METRIC (U3)	Hidden Item	lock out
Rated Mtr	(Rated Motor Power) This parameter sets the rated power in horsepower (HP) or kilowatts (kW) of the	HP	1.0 – 500.0	0.	.0	N	Y
Pwr	motor. Note: value should be obtained from the motor nameplate	kW	0.75 – 300.00	0.0	00	1,	•
Rated Mtr Volts	(Rated Motor Voltage) This parameter sets the rated motor voltage. Note: value should be obtained from the motor nameplate	Volts	190.0 – 575.0	0.	0	N	Υ
Rated Excit Freq ^{i,iii}	(Rated Motor Excitation Frequency ^{I,III}) This parameter sets the excitation frequency of the motor. Note: value should be obtained from the motor nameplate	Hz ^{i,iii}	5.0 – 400.0 ^{i,///}	0.0 ^{i,iii}		N ^{i,iii}	Y ^{i,iii}
Rated Motor Curr	(Rated Motor Amps) This parameter sets the rated motor current. Note: value should be obtained from the motor nameplate.	Amps	1.00 - 800.00	0.00		N	Υ
Motor Poles	(Motor Poles) This parameter sets the number of poles in the motor. NOTE: This must be an even number or a Setup Fault #3 will occur. Note: value should be obtained from the motor nameplate.	none	2 – 128	4	ı	N	Y
Rated Mtr Speed	(Rated Motor Speed) This parameter sets the rated rpm of the motor (nameplate speed). NOTE: This is a function of the motor only and does not need to be the same as the CONTRACT MTR SPD (A1) parameter setting. Note: value should be obtained from the motor nameplate. Rated Mtr Speed is defined as the synchronous speed minus the slip. At times, the motor manufacturer will place the synchronous speed on the data nameplate. The Adaptive Tune procedure on page 135 calculates the amount of slip of the motor. (synchronous speed of motor motor motor motor) 120* (rated excitation frequency motor) # of Poles	RPM	1.0 – 3000.0	0.	0	N	Y
% No Load Current ^{i,iii}	(Percent No Load Current ^{1,m}) This parameter sets the percent no load current of the motor. This parameter sets the window (±25%) around which the adaptive tune can adjust the motor's percent no load current. Units in percent of current. For more information on the adaptive tune, see Adaptive Tune on page 135.	% ^{i,iii}	10.0 – 80.0 ^{i,iii}	per MOT	OR ID ^{i,iii}	N ^{i,iii}	N ^{i,iii}

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

				Default		Uidda:	Run
Parameter	Description	Units	Range	ENGLISH (U3)	METRIC (U3)	Hidden Item	lock out
Stator Leakage X ^{î.∰}	(Stator Leakage Reactance ^{1,///}) This parameter sets the stator reactance leakage, as a percent of the BASE IMPEDANCE, which appears in the Power Data display. Note: The base impedance is based on the RATED MTR PWR and RATED MTR VOLTS parameters.	% ^{i,iii}	0.0 - 20.0 ^{i,///}	per MOTOR ID		Y ^{i,iii}	N ^{i,iii}
Rotor Leakage X ^{i,iii}	(Rotor Leakage Reactance ^{1,///}) This parameter sets the rotor reactance leakage, as a percent of the BASE IMPEDANCE, which appears in the Power Data D2 Submenu.	% ^{i,∭}	0.0 - 20.0 ^{i,iii}	per MO1	「OR ID ^{i,∭}	Y ^{i,iii}	N ^{i,jjj}
Flux Sat Break ⁱ	(Flux Saturation Break Point ') This parameter sets the flux saturation curve slope change point. Units in percent of flux.	% ⁱ	0 – 100 ⁱ	75 ⁱ		Y ⁱ	Y
Flux Sat Slope 1 ⁱ	(Flux Saturation Slope #1) This parameter sets the flux saturation curve slope for low fluxes. Units are PU slope 100%. NOTE: Performance may be unstable if FLUX SAT SLOPE 1 is set to 0 and FLUX SAT SLOPE 2 is set to 0.	PU ⁱ	0 – 200 ⁱ	0 i		Y	Y ⁱ
Flux Sat Slope 2 ⁱ	(Flux Saturation Slope #2 ') This parameter sets the flux saturation curve slope for high fluxes. Units are PU slope 100%. NOTE: Performance may be unstable if FLUX SAT SLOPE 1 is set to 0 and FLUX SAT SLOPE 2 is set to 0.	PUi	0 – 200 ⁱ	50 ⁱ		Y¹	Y ⁱ
Motor Min Volts ⁱⁱⁱ	(V/Hz Pattern Voltage at Minimum Frequency ⁱⁱⁱ) This parameter sets voltage at the V/Hz pattern minimum frequency. Note: a SETUP FLT #9 will occur if the below formula is not meet. (MOTOR) MID VOLTS (RATED) MTR VOLTS	Volts ⁱⁱⁱ	0.1 – 100.0 ^{jii}	Per	ID ^{jii}	N ⁱⁱⁱ	Y ⁱⁱⁱ
Motor Min Freq ⁱⁱⁱ	(V/Hz Pattern Minimum Frequency)") This parameter sets minimum frequency used to define the V/Hz pattern. Note: a SETUP FLT #9 will occur if the below formula is not meet. (MOTOR MID SECIT FREQ)	Hz ⁱⁱⁱ	0.1 – 10.0 ⁱⁱⁱ	1.0 ⁱⁱⁱ		N ⁱⁱⁱ	Y ⁱⁱⁱ
Motor Mid Volts ⁱⁱⁱ	(V/Hz Pattern Voltage at Middle Frequency)ii) This parameter sets rated voltage at the V/Hz pattern middle frequency. This setting is limited by the motor's rated voltage (RATED MTR VOLTS(A5)). Note: a SETUP FLT #9 will occur if the below formula is not meet. (MOTOR MID VOLTS) < (MOTOR MTR VOLTS)	Volts ⁱⁱⁱ	0.1 – 575.0 ⁱⁱⁱ	Per	ID ⁱⁱⁱ	Ņ ⁱⁱⁱ	Y ⁱⁱⁱ

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

				Default		11144-	Run
Parameter	Description	Units	Range	ENGLISH (U3)	METRIC (U3)	Hidden Item	lock out
Motor Mid Freq ⁱⁱⁱ	(V/Hz Pattern Middle Frequency") This parameter sets middle frequency used to define the V/Hz pattern. Note: a SETUP FLT #9 will occur if the below formula is not meet. (MOTOR MIN KIND KIND KIND KIND KIND KIND KIND KI	Ηz ^{jii}	0.1 – 40.0 ⁱⁱⁱ	3.0 ^{jii}		N ⁱⁱⁱ	Y ⁱⁱⁱ
Ovld Start Level	(Motor Overload Start Level) This parameter defines maximum current at which motor can run continuously. This parameter is also one of the two parameters that define the motor overload curve. Units in percent of rated current. For more information, see OVLD START LEVEL on page 76.	%	100 – 150	11	10	Y	Y
Ovld Time Out	(Motor Overload Time Out) This parameter defines the amount of time before a motor overload alarm occurs when the motor is running at the current level defined below: $ \begin{pmatrix} OVLD \\ START \\ LEVEL: \end{pmatrix} + \begin{pmatrix} 40\% \\ rated \\ motor \\ current \end{pmatrix} $ This is the other parameter used to define the overload curve. For more information, see OVLD START LEVEL on page 76.	sec	5.0 – 120.0	60	0.0	Y	Y
Stator Resist	(Stator Resistance) This parameter sets the amount of resistance in the motor stator, as a percent of the BASE IMPEDANCE, which appears in the Power Data D2 Submenu.	%	0.0 – 20.0		0 ⁱⁱ	Y	N
Motor Iron Loss	(Motor Iron Losses) This parameter sets the motor iron loss at rated frequency. Units in percent of rated power.	%	0.0 – 15.0	0.	.5	Y	N
Motor Mech Loss	(Motor Mechanical Losses) This parameter sets the motor mechanical losses at rated frequency. Units in percent of rated power.	%	0.0 – 15.0	1.	.0	Y	N
D Axis Induct- ance ⁱⁱ	(Magnet/Flux Axis Equivalent Circuit Inductance ⁱⁱ) This parameter sets amount of inductance in flux producing equivalent circuit of the vector controlled PM motor. Higher inductances are used for higher horsepower motors., but it is best if obtained from motor specifications.	тН ^{іі}	0.50 – 100.00 ^{ji}	10.00 ⁱⁱ	30.00 ⁱⁱ	N ⁱⁱ	N ⁱⁱ
Q Axis Induct- ance ⁱⁱ	(Torque Axis Equivalent Circuit Inductance ⁱⁱ) This parameter sets amount of inductance in torque producing equivalent circuit of the vector controlled PM motor. Higher inductances are used for higher horsepower motors., but it is best if obtained from motor specifications.	тН ^{іі}	0.50 – 100.00 ^{ji}	10.00 ⁱⁱ	30.00 ⁱⁱ	N"	N ⁱⁱ

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

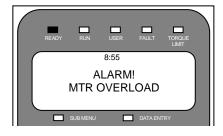
	Description			Default		Hidden	Run
Parameter	Description	Units	Range	ENGLISH (U3)	METRIC (U3)	Item	lock out
Trq Const Scale ⁱⁱ	(Torque Constant Scale") The drive automatically calculates the torque constant. This value can scale the calculated torque constant to provide better performance.	none ⁱⁱ	0.50 – 2.00 ⁱⁱ	0.78 ⁱⁱ		N ⁱⁱ	N"
Encoder Ang Ofst ⁱⁱ	(Encoder Angle Offset") This parameter contains the value of the alignment determined during the alignment procedure. For more information on the alignment procedure, see Magnetek PM Start-Up Procedure on page 142.	none ⁱⁱ	0 – 35999 ^{ji}	300	000 ⁱⁱ	N ⁱⁱ	Y ⁱⁱ

Table 13: Motor A5 Submenu

OVLD START LEVEL

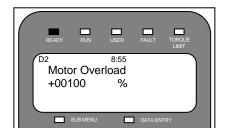
(Motor Overload Start Level)

This parameter defines maximum current at which motor can run continuously. This parameter is also one of the two parameters that define the motor overload curve.


The motor overload parameters can be adjusted by the user. The following two parameters are used to define the motor overload curve.

- motor current overload start level (OVLD START LEVEL(A5)) parameter
- motor current time out (OVLD TIME OUT(A5)) parameter

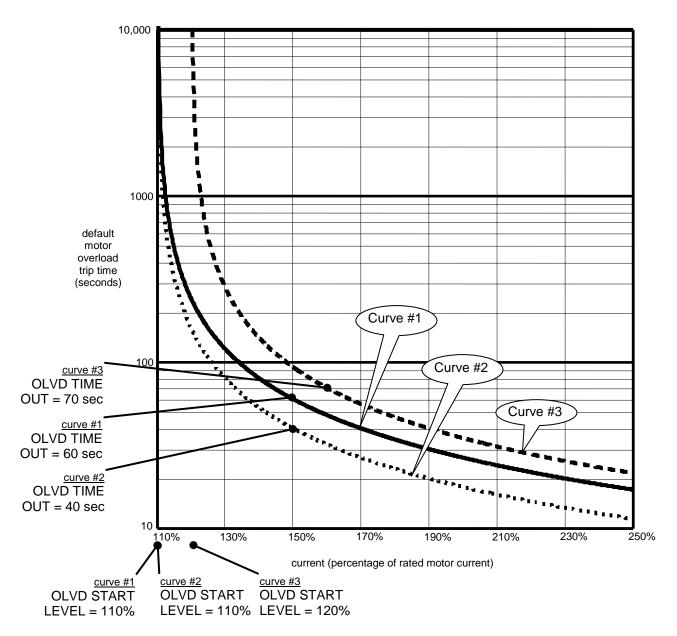
Three overload curves are shown. Curve #1 is the default motor overload curve. The parameter settings that define the three overload curves are shown.


	OVLD	OVLD
	START	TIME
	LEVEL	OUT
curve #1	110%	60 sec
curve #2	110%	40 sec
curve #3	120%	70 sec

Motor Overload Parameters When the motor had exceeded the user defined motor overload curve, the drive will declare a motor overload alarm.

The motor overload alarm can also be assigned to a logic output.

Under the POWER DATA display sub-menu, the MOTOR OVERLOAD (D2) value displays the percentage of motor overload trip level reached. Once this value reaches 100% the motor has exceeded its user defined overload curve and a motor overload alarm is declared by the drive.



The drive will only declare a motor overload and the user is responsible for action.

But, if the user wants the drive to declare a fault on a motor overload the following need to be completed:

- logic output configured to MTR OVERLOAD
- logic input configured to EXT FAULT
- wire the EXT FAULT logic input terminal to the to MTR OVERLOAD logic output terminal
- wire the logic input common terminal to the logic output common

With the above set-up, the drive will then declare an External Fault on a motor overload.

Motor Overload Curve

Configure C0 Menu

User Switches C1 Submenu

			Default		Hidden	Run
Parameter	Description	Choices	ENGLISH (U3)	METRIC (U3)	item	lock out
Spd Command Src	(Speed Command Source) This parameter designates the source of the drive's speed command. The three possible sources for the speed command are following: • Serial Channel - a RS-422 serial port located on the drive control board (either speed profile or multi-step speed commands) - serial - speed profile (only used in serial mode 1) - ser mult step - serial multi-step speed commands (only used in serial mode 2) • Analog Channel - a bipolar (±10V) signal. Available with the analog channel is a Speed Command Multiplier (SPD COMMAND MULT(A1)) and Speed Command Bias (SPD COMMAND BIAS(A1)). These parameters are used to scale the user's analog speed command to the proper range for use by the drive software. • Multi-Step Command - user defined fifteen discrete speed commands (CMD1 - CMD15). Four logic inputs are used as speed command selections (CMD0 is reserved for zero speed. But, the user can specify CMD1 - CMD15 to be any speed command either positive or negative)	 analog input multi-step serial ser mult step 	MULTI-	STEP	Y	Y
Run Command Src	(Run Command Source) This parameter allows the user to choose the source of the run command from one of the following sources: an external run signal from a logic input (external tb), a run signal transferred across a serial channel (serial), or a signal from both the serial channel and a logic input (serial+extrn). If a signal is required from a logic input (either external tb or serial+extrn), the Run signal on TB1 must be selected.	external tbserialserial+extrn	EXTERN	IAL TB	Y	Y
Motor Rotation	(Motor Rotation) This parameter allows the user to change the direction of the motor rotation. As an example, if the car controller is commanding the up direction and the car is actually going in a down direction, this parameter can be changed to allow the motor rotation to match the car controller command.	- forward - reverse	FORW	/ARD	Y	Y

			Defa	ault	Hidden	Run
Parameter	Description	Choices	ENGLISH	_	item	lock
Encoder Select ⁱⁱ	(Encoder Selection") HPV900 S2 PM drives can run either with an incremental encoder or with an Heidenhain Endat encoder. This parameter sets the feedback option for the drive.	– endat ⁱⁱ – incremental ⁱⁱ	(U3)	(U3)	Y ⁱⁱ	out Y ⁱⁱ
Encoder Connect	(Encoder Connection) This parameter allows the user to electronically switch A and /A signals from the encoder without moving any wiring.	- forward - reverse	FORW	/ARD	Y	Y
Encoder	(Encoder Fault Enable ^{1,11}) This parameter allows the user to temporarily disable the Encoder Fault. Adding this feature allows the user to temporarily disable the Encoder Fault during the initial start-up process, when the motor model (defined by the A5 Motor Parameters) is not clearly defined. When the Encoder Fault is disabled	– disable ^{i,ii}	ENABLE ^{i,ii}		Y i,ii	Y ^{i,} ii
Fault ^{i,#}	(ENCODER FAULT (C1) = disabled), the drive will display the warning message "EncoderFault OFF", every time the RUN command is removed. IMPORTANT: After the motor parameters in A5 have been established, the Encoder Fault should be enabled (ENCODER	– enable ^{i,ii}				T'
Cont Confirm Src	FAULT (C1) = enabled). (Contactor Confirm Source) This switch selects if hardware confirmation of motor contactor closure is necessary before drive attempts to pass current through motor. If hardware confirmation is available set to EXTERNAL TB and select the Contact Cnfirm signal on a logic input terminal.	- none - external tb	NONE	EXTER- NAL TB	Y	Y
Fast Flux ⁱ	(Fast Flux Enable') This parameter addresses the method the HPV 900 Series 2 uses to build up flux in the motor. Enabling the Fast Flux function can decrease the motor fluxing time significantly. By decreasing the motor's flux time, the starting takeoff time will also be decreased. For more information, see Fast Flux on page 89.	– disable ⁱ – enable ⁱ	DISABLE		Y ⁱ	Yi
HI/LO Gain Src ^{i,#}	(High / Low Gain Source ^{1,11}) High / low gain change switch source. For more information, see HI/LO GAIN SRC on page 89.	 external tb^{i,ii} serial^{i,ii,ii} internalⁱ 	INTER	NAL ^{i,ii}	Y ^{i,ii}	Y ^{i,ii}
I-Reg Inner Loop ⁱⁱ	(Current Regulator Inner Loop") This switch is used to disable/enable the current regulator inner loop function. It is used to enhance the current loop performance.	– disabled ⁱⁱ – enabled low ⁱⁱ – enabled high ⁱⁱ	DISAB	BLED ⁱⁱ	N ⁱⁱ	Nii
Ramped Stop Sel ^{i,ii}	(Ramp Stop Select ^{1,11}) Chooses between normal stop and torque ramp down stop. For more information, see RAMPED STOP SEL on page 90.	– none ^{i,ii} – ramp on stop ^{i,ii}	NON	IE ^{i,jj}	Y ^{i,ii}	Y ^{i,ii}

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

		Default Hidden		Run		
Parameter	Description	Choices	ENGLISH (U3)		Hidden item	lock out
Ramp Down En Src ^{i,ii}	(Ramp Down Enable Source ^{1,11}) If RUN LOGIC is selected, the user can remove the run command and the drive will delay in dropping the run command until torque ramp down stop function is complete. If EXTERNAL TB or SERIAL is selected, the user must keep the run command while allowing the Torque Ramp Down Stop function to be completed.	 external tb^{i,ii} run logic^{i,ii} serial^{i,ii} 	EXTERN	AL TB ^{i,ii}	Y ^{i,ii}	Y ^{i,jj}
S-Curve Abort	(S-Curve Abort) This parameter, S-CURVE ABORT (C1), addresses how the S-Curve Speed Reference Generator handles a reduction in the speed command before the S-Curve Generator has reached its target speed. For more information, see S-Curve Abort on page 91.	- disable - enable	DISABLE	ENABLE	Y	Υ
DB Protection	(Dynamic Braking Resistor Protection Selection) The dynamic braking IGBT is limited as to when it can be turned "on" (i.e. send power to the dynamic braking resistors). The dynamic braking IGBT is allowed to be "on" while the drive is running (i.e. while the speed regulator is released) and for a period of ten (10) seconds after the drive is stopped. If the dynamic braking IGBT is still "on" ten seconds after the drive stops running, the drive will turn "off" the dynamic braking IGBT (thus stop sending power to the dynamic braking resistors) and declare a "DB VOLTAGE" fault or alarm (whether fault or alarm, depends on setting of this parameter).	– fault – alarm	FAULT		Y	Y
Spd Ref Release	(Speed Reference Release) The user can select when the Speed Reference Release signal is asserted: If the user does not want the drive to wait for the mechanical brake to be picked then SPD REF RELEASE can be made equal to REG RELEASE If the user does want the drive to wait for the brake to be picked then SPD REF RELEASE is not asserted until BRAKE PICKED becomes true.	reg releasebrake picked	REG RELEASE	BRAKE PICKED	Y	Y
Brake Pick Src	(Brake Pick Source) If the BRAKE PICK SRC (C1) is set to INTERNAL, the HPV 900 Series 2 will attempt to pick (lift) the brake when magnetizing current has been developed in the motor.	- internal - serial	INTER	NAL	Y	Y

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

	Description		Default		Hidden	Run
Parameter	Description	Choices	ENGLISH (U3)	METRIC (U3)	item	lock out
Brake Pick Cnfm	(Brake Pick Confirm) If this switch is set to EXTERNAL TB, the HPV 900 Series 2 will wait for brake pick confirmation before releasing the speed reference. When set to EXTERNAL TB, the MECH BRK PICK signal on TB1 must also be selected.	noneexternal tbinternal time	NOM	. ,	Y	Y
Motor Ovrld Sel	 (Motor Overload Select) This parameter selects the action to be taken by drive when declaring a user selectable Motor Overload. When the motor overload level is reached, the options are: Alarm – the drive only declares a motor overload and the user is responsible for action FIt immediate – the drive will immediately declare a fault and turnoff the drive's output Fault at stop – the drive will delay declaring a fault until the run command is removed 	- alarm - flt immediate - fault at stop	ALAI	RM	Y	Y
Stopping Mode	(Multi-step Stopping Mode Selection) When the speed command source is set to multi-step (SPD COMMAND SRC (C1)=multi-step), the parameter, STOPPING MODE (C1), determines the stopping mode of the HPV 900 Series 2. The two selectable methods for the Stopping Mode parameter are "Immediate" and "Ramp to stop". Note: If the SPD COMMAND SRC (C1) parameter is set to any other definition other than "multi-step", the drive will behave to the "immediate" stopping mode (independent of the setting of the STOPPING MODE (C1) parameter). The "Immediate" stopping mode requires the drive to be at zero speed prior to removing the "Run" command. The "Immediate" selection is how the HPV 900 Series 2 has traditionally behaved prior to the addition of this parameter. The "Ramp to stop" stopping mode is intended for use when removing the "Run" command prior to the drive reaching zero speed (as defined by the AB ZERO SPD LEV (A1) parameter). When the "Run" command is removed and the speed reference is above zero speed, the speed reference will ramp to zero speed following the selected s-curve.	immediateramp to stop	IMMED	NATE	Y	Y

			Default		Lliddo:	Run
Parameter	Description	Choices	ENGLISH (U3)	METRIC (U3)	Hidden item	lock out
Auto Stop	(Auto Stop Function Enable) The Auto Stop function determines how the drive logic will respond to a zero or non-zero speed command. The function will only work when the speed command source is either multi-step or serial (SPD COMMAND SRC (C1)=multi-step or serial). For more information, see Auto Stop on page 92.	- disable - enable	DISABLE		Y	Y
Stall Test Ena ⁱⁱⁱ	(Stall Test Enable ^{III}) When enabled, the function checks that motor current goes at or above a percentage (defined by STALL TEST LVL(A1)) for defined amount of time (defined by STALL FAULT TIME(A1)). If the motor current exceeds the defined parameters a STALL TEST FAULT will be declared.	– disable ⁱⁱⁱ – enable ⁱⁱⁱ	ENAE	BLE ⁱⁱⁱ	\mathcal{N}^{iii}	Y ⁱⁱⁱ
Stall Prev Ena ⁱⁱⁱ	(Regeneration Stall Prevention Enable") When enabled, the Stall Prevention (Current Limit) function is enabled during regeneration. When the defined regeneration current limit is reached (REGEN TORQ LIMIT(A1)), the stall prevention function will increase speed in an effort to shed load. Also, the responsiveness of the stall prevention function is determined by the Current Limit Integral Gain (ILIMT INTEG GAIN(A4)) parameter.	– disable ⁱⁱⁱ – enable ⁱⁱⁱ	DISABLE ⁱⁱⁱ		N ^{jii}	Y ⁱⁱⁱ
Serial Mode	 (Serial Mode Selection) This parameter selects between serial protocols. The choices are: Mode 1 – selects the Magnetek standard protocol. Mode 2 – selects a custom protocol. Mode 2 Test – test mode used only when testing custom protocol serial mode 2. DCP3 – not currently active. DCP4 – not currently active. 	- none - mode 1 - mode 2 - mode 2 test - DCP3 - DCP4	NOI	NE	Y	Y

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

			Default			Run
Parameter	Description	Choices	ENGLISH (U3)		Hidden item	lock
Ser2 Flt Mode	 (Serial Mode 2 Fault Mode) Used only with serial protocol (mode 2) This parameter defines the reaction to a serial communications fault while in Serial Mode 2. There are three possible settings: Immediate – upon sensing a serial communications fault while in the run mode will result in an immediate stop. The equivalent to removal of the "Drive Enable" logic input. Run Remove – upon sensing a serial communications fault while in the run mode, the drive will react in the same manner that removal of the run command would react. In this case, the type of stop will be defined by the STOPPING MODE (C1) parameter. Rescue – upon sensing a serial communications fault while in the run mode, an attempt will be made to continue to run at a low speed to the next floor. Upon sensing the fault, the drive will decelerate to a creep speed and continue to run at that speed until the first of the two following termination conditions are reached.	-immediate -run remove -rescue		Y	Y	
Drv Fast Disable	(Drive Fast Disable) Addresses how fast the drive responds to the removal of the DRIVE ENABLE logic input.	- disable - enable	DISA	BLE	Y	Y
Speed Reg Type ^{i,#}	(Speed Regulator Type'") Chooses speed regulator: Ereg or PI regulator. Magnetek recommends the use of the Elevator Speed Regulator (Ereg) for better elevator performance. If set to external regulator, the drive will be configured as a torque controller. IMPORTANT This assumes the car controller is doing its own closed-loop speed regulation. (i.e. a completely closed outer speed loop with the car controller having its own encoder feedback). The source of the external torque command is determined by the EXT TORQ CMD SRC (C1) parameter. For more information, see SPEED REG TYPE on page 90.	– elev spd reg ^{i,ii} – pi speed reg ^{i,ii} – external reg ^{i,ii}	ELEV SP	D REG ^{i,ii}	Y ^{i,ii}	Y ^{i,#}

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

			Default		Hidden	Run
Parameter	rameter Description Choices		ENGLISH (U3)	METRIC (U3)	item	lock out
Brake Hold Src	(Brake Hold Source) If set to internal, the drive will command the mechanical brake to hold mode until confirmation of brake picked exists.			RNAL	Y	Υ
Brk Pick Flt Ena	(Brake Pick Fault Enable) When this parameter is set to ENABLE, the brake pick command and confirmation must match within the specified time in BRK PICK TIME (A1) parameter or a brake pick fault is declared.			Y	Υ	
Brk Hold Fit Ena	(Brake Hold Fault Enable) When this parameter is set to ENABLE, the brake hold command and confirmation must match within the specified time in BRK HOLD TIME (A1) parameter or a brake hold fault is declared.	- disable - enable DISABLE			Y	Y
Ext Torq Cmd Src ^{i,ii}	(Torque Command Source ^{1,11}) Sets the source of the external torque command when the SPEED REG TYPE (C1) is set to external reg. NOTE: • if SPEED REG TYPE is set to external reg and EXT TORQ CMD SRC is set to serial, the drive is a torque controller • if SPEED REG TYPE is set for a speed regulator (either pi speed reg or elev spd reg) and EXT TORQ CMD SRC is set to either serial, the torque command is an auxiliary torque command (torque feedforward command)	– none ^{i,#} – serial ^{i,#} – analog input ^{i,#}	NON	IE ^{i,#}	Y ^{i,jj}	Y ^{i,jj}

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

			Default			Run
Parameter	Description	Choices	ENGLISH (U3)	METRIC (U3)	Hidden item	lock out
Fault Reset Src	(Fault Reset Source) This parameter determines the source of the drive's external fault reset from one of the following sources: an external fault reset signal from a logic input (external tb), a fault reset signal transferred across a serial channel (serial), or the drive automatically resets the faults (automatic). The user also has the option to reset faults directly through the operator. Automatic Fault Reset If the fault reset source is set to automatic, the faults will be reset according to the setting of the FLT RESET DELAY (A1) and FLT RESETS/HOUR (A1) parameters. When a logic input is defined as "fault reset" and this logic input signal is transitioned from false to true: an active fault will be reset and automatic fault reset counter (defined by FLT RESETS/HOUR(A1)) will be reset to zero. CAUTION If the run signal is asserted at the time of a fault reset, the drive will immediately go into a run state. Unless using the autofault reset function (FAULT RESET SRC (C1)=automatic), then the run command needs to be cycled to be reset automatically, but will reset if initiated by a logic input without cycling the run command.	 external tb serial automatic 	EXTERN	IAL TB	Y	Y
Overspd Test Src	(Overspeed Test Source) This switch determines the source of the overspeed test. Operation of the overspeed test function is specified by the OVRSPEED MULT (A1) parameter. Regardless of the setting of this parameter, the user can call for the overspeed test via the Digital Operator.	external tbserial	EXTERN	IAL TB	Y	Y

			Default		Hidden	Run
Parameter	Description	Choices	ENGLISH (U3)	METRIC (U3)	item	lock out
PreTorque Source ^{i,ii}	(Pre-Torque Source',") This switch determines if a pre torque command is used and with what source. Pre-torque is the value of torque that the drive should produce as soon as the speed regulator is released to prevent rollback due to unbalanced elevator loads. This 'priming' of the speed regulator is done with the pre-torque command, which is used when the speed regulator release is asserted. The two possible sources for the pre-torque command are following: • serial channel • analog channel The serial channel is a RS-422 or 485 serial port depending on control board. The analog pre-torque signal is bipolar (±10V). Available with the analog channel is a Pre-Torque Command Multiplier (PRE TORQUE MULT (A1)) and Pre-Torque Bias (PRE TORQUE BIAS(A1)). These parameters are used to scale the user's analog pre-torque command to the proper range for use by the drive software.	– none ^{i,ii} – analog input ^{i,ii} – serial ^{i,ii}	NON		Y ^{i,II}	Y ^{i,ii}
PreTorque Latch ^{i,ji}	(Pre-Torque Latch ^{1,11}) This parameter determines if the pre- torque signal is latched. NOTE: If PreTorque Source has been set to NONE, the setting does not have any effect on the operation of the drive. Some car controllers send both pre-torque and speed commands. To facilitate this, the HPV 900 Series 2 has the option of latching the pre-torque command. If pre-torque latching is selected using the Pre-Torque Latch parameter, a FALSE to TRUE transition on the pre-torque latch clock latches the value on the pre-torque channel into the drive. This channel is allowed to change any time except during this transition without affecting the value of the latched pre-torque command. The Pre-Torque Latch Clock controls when the pre-torque command is latched. The Pre-Torque Latch clock parameter (PTorq LATCH CLCK) determines the source of this latch control. The two choices for latch control are the serial channel or a logic input (EXTERNAL TB). The speed regulator uses the latched pre- torque command when the internal Speed Regulator Release signal is asserted. Once the pre-torque command is used the latch and the pre-torque command is	 latched^{i,ii} not latched^{i,ii} 	NOT LAT	CHED ^{i,ii}	Y ^{i,jj}	Y ^{i,ii}

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

			Default		Hidden	Run
Parameter	Description	Choices	ENGLISH (U3)	METRIC (U3)	item	lock out
PTorq Latch Clck ^{i,ii}	(Pre-Torque Latch Clock ^{1,11}) If the PRE-TORQUE LATCH has been set to LATCHED, then this parameter chooses the source for latch control. If set to EXTERNAL TB, the Pre-Trq Latch signal on TB1 must be selected.	– serial ^{i,ii} – external tb ^{i,ii}	EXTERN		Y ^{i,jj}	Y ^{i,ii}
Dir Confirm	 (Direction Confirm) When enabled, the function allows confirmation of the polarity of the initial analog speed command via the Run Up or Run Down logic input commands. If the Run Up logic input is selected and true with the polarity of the analog signal positive, then the analog speed command is accepted unchanged+d. If the logic input Run Down logic input is selected and true with the polarity of the analog speed command negative, the analog speed command is accepted unchanged. If however, the logic input Run Up is true and the polarity is negative or the logic input Run Down is true and the polarity is positive, then the speed command is held at zero. 	disabledenabled	DISAE	BLED	Y	Y
Mains Dip Ena	(Mains Dip Enable) When enabled, the function will reduce the speed (by the percentage defined by the MAINS DIP SPEED parameter) when the drive goes into 'low voltage' mode. 'Low voltage' mode is defined as when the drive declares a UV alarm, which is defined by the Input line-to-line voltage (INPUT L-L VOLTS) parameter and the Undervoltage Alarm Level (UV ALARM LEVEL)	- disable - enable	DISABLE		Y	Y
Mlt-Spd to Dly 1		- none - mspd 1	NOI	NE	Y	Υ
MIt-Spd to Dly 2	(Multi-step Speed Command Delay x) This parameter assigns multi-step speed command to recognition delay timer x as defined by the MSPD DELAY x (A1) - mspd 1 - mspd 2 - mspd 3 - mspd 4 - mspd 5 - mspd 5 - mspd 6 - mspd 7		NOI	NE	Y	Υ
MIt-Spd to Dly 3	parameter. For more information, see MULTI-STEP COMMAND DELAYS on page 93. - mspd 8 - mspd 9 - mspd 10 - mspd 11 - mspd 11 - mspd 12 - mspd 13	NOI	NE	Y	Y	
Mit-Spd to Dly 4		- mspd 14 - mspd 15	NOI	NE	Y	Y

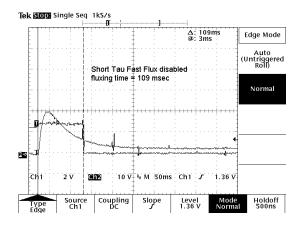
Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

			Default		Hidden	Run
Parameter	Description	Choices	ENGLISH (U3)	METRIC (U3)	item	lock out
Priority Msg	(Priority Message Enabling) With Priority Message disabled the user will not see priority messages meaning faults and alarms will not be displayed on the operator, but the faults will be placed into the fault history and active fault lists with the Fault LED on. Leave Priority Message enabled when drive is not being worked on.	– enable – disable	ENABLE		Y	N
ARB Select ⁱⁱ	(Anti-Rollback Select ⁱⁱ) With ARB SELECT set to enable, the drive will calculate pretorque values when movement is seen on the shaft. For information on how to setup ARB, see on page 59.	– enable ⁱⁱ – disable ⁱⁱ	DISABLE ⁱⁱ		N ⁱⁱ	Y ⁱⁱ
Drv Enable Src	(Drive Enable Source) This parameter allows the user to choose the source of the drive enable command from one of the following sources: an external run signal from a logic input (external tb1), a drive enable signal transferred across a serial channel (serial), or a signal from both the serial channel and a logic input (serial+extrn). If a signal is required from a logic input (either externaltb1 or serial+extrn), the drive enable signal on TB1 must be selected.	external tbserialserial+extrn	EXTERNAL TB		N	Y

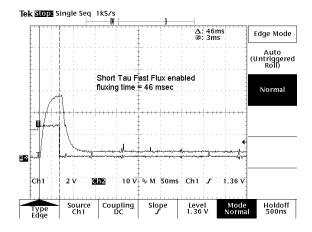
Table 14: User Switches C1 Submenu

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

Detailed descriptions


FAST FLUX

(Fast Flux Enable)


This parameter addresses the method the HPV 900 Series 2 uses to build up flux in the motor. Enabling the Fast Flux function can decrease the motor fluxing time significantly. By decreasing the motor's flux time, the starting takeoff time will also be decreased.

Certain motors will have a noticeably long fluxing time, which is indicated by the time between the run command being issued and the speed regulator release output going true. Enabling the Fast Flux function will reduce this delay.

<u>Fast Flux Function with FAST FLUX = disabled</u> In this example, the motor fluxing time was 109 msec.

Fast Flux Function with FAST FLUX = enabled With the same motor example, the motor fluxing time was reduced to 46 msec.

ⁱ Parameter accessible through CLOSED LOOP (U9)

HI/LO GAIN SRCi,ii

(High / Low Gain Source)

This parameter determines the source of the high / low gain switch. Note: this parameter is only accessible and available during closed loop operation.

The speed regulator high / low gain function was developed in response to high performance elevator requirements where the resonant nature of the elevator system interferes with the speed response of the drive.

When the speed response (gain) is set to high levels, the resonant characteristics created by the spring action of the elevator ropes can cause car vibration. To solve this problem, the speed regulator is set to a low enough response (gain) so that the resonant characteristics of the ropes are not excited.

This is accomplished by controlling the sensitivity or response of the speed regulator via the high / low gain switch and gain reduce multiplier.

By using the gain reduce multiplier; the user can specify a lower response (gain) for the speed regulator when the drive is at higher speeds. The gain reduce multiplier (GAIN REDUCE MULT(A1)) tells the software how much lower, as a percentage, the speed regulator response (gain) should be.

The high / low gain switch determines when the HPV 900 Series 2 is in 'low gain' mode. In the 'low gain' mode, the gain reduce multiplier has an effect on the speed regulator's response (gain).

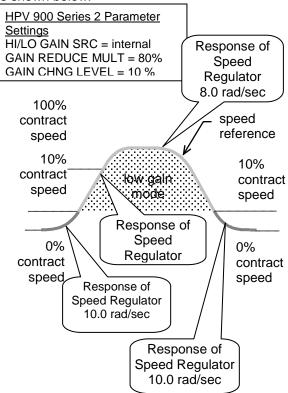
The drive allows for the high / low gain switch to be controlled either externally or internally. The high / low gain source parameter (HI/LO GAIN SRC) allows for this external or internal selection.

The high / low gain switch can be controlled externally by either:

- a logic input
- the serial channel

The high / low gain switch can also be controlled internal by:

 the gain change level parameter (GAIN CHNG LEVEL), which defines a percentage of contract speed


With the drive set to internal control, the speed regulator will go into 'low gain' mode when the drive senses the motor is above a defined speed level. The defined speed level is

Parameter accessibly through PM (U9)

Parameter accessible through OPEN LOOP(U9)

determined by the gain change level parameter.

An example of internal high / low gain control is shown below.

High / Low Gain Example i,ii

RAMPED STOP SELi,ii

(Ramp Stop Select) This parameter allows the selection of the Torque Ramp Down Stop function. This function is used to gradually remove the torque command after the elevator has stopped and the mechanical brake has been set. This prevents a shock and possible 'bump' felt in the elevator from the torque signal going to zero too quickly.

A function unique to elevators involves the interaction between the motor torque and the mechanical brake that holds the elevator. Under full load conditions at the end of a run, if the brake is set and the motor torque is removed quickly, some brake slippage may occur. Therefore, the option of gradually reducing the motor torque is provided by the Torque Ramp Down Stop function.

Upon being enabled by the Ramped Stop Select Parameter (RAMPED STOP SEL(C1)), the torque command is linearly ramped to zero from the value that was present when the 'Ramp Down Enable' was selected.

The Ramp Down Enable has the following three possible sources:

- An input logic bit (EXTERNAL TB1)
- The run logic initiated by the removal of the run command
- The serial channel

The Ramp Down Enable Source parameter (RAMP DOWN EN SRC(C1)) is used to select one of the above options.

A method of providing the Ramp Down Enable would be with a logic signal (EXTERNAL TB1) that is dedicated to that function. The Ramp Down Enable would be asserted while the Run command is still present and remain there until the ramp is completed, after which the Run command would be removed.

The RUN LOGIC option to trigger the Ramp Down Enable from the Run command is provided. In this case, removal of the Run command enables the Ramp Down Stop Function.

The time it takes for the HPV 900 Series 2 to perform its ramped stop is determined by the Ramped Stop Time Parameter. The Ramped Stop Time parameter (RAMPED STOP TIME(A1)) selects the amount of time it would take for the drive to ramp from the rated torque to zero torque.

ⁱ Parameter accessible through **CLOSED LOOP (U9)**

[&]quot;Parameter accessibly through PM (U9)

Parameter accessible through OPEN LOOP(U9)

S-CURVE ABORT

This parameter, S-CURVE ABORT (C1), addresses how the HPV 900 Series 2's S-Curve Speed Reference Generator handles a *reduction* in the speed command before the S-Curve Generator has reached its target speed.

Note: the default for the S-CURVE ABORT (C1) parameter is disabled.

S-curve Function with S-CURVE ABORT = disabled

With a normal S-curve function, a change in the speed command is never allowed to violate the defined acceleration or jerk rates. If a reduction in the speed command is issued before the S-Curve generator has reached its target speed, then the jerk rate dictates what speed is reached before the speed may be reduced.

Figure 37 below shows this type of operation. Note the jerk rates are very low to exaggerate proportion of S in the curve to clearly show the overshoot in speed so that the maximum jerk rate is not violated. In this figure, a reduction in

the speed command occurs from a high-speed command (which was not yet achieved on the output of the S-Curve) to a low speed command. Note that the speed reference (S-Curve output) continued to increase after the speed command was reduced. This increase is speed was necessary to avoid violation of the jerk rate setting.

S-curve Function with S-CURVE ABORT = enabled

In Figure 38 below, the optional S-Curve abort has been selected. In this case when the speed command is reduced, the speed reference immediately starts to reduce violating the jerk limit (thus no jerk out phase), which could be felt in the elevator.

For optional S-Curve abort to be active requires that:

- The speed command source must be selected as Multi-step (SPD COMMAND SRC=multi-step).
- The S-curve Abort function must be ENABLED (S-CURVE ABORT = enabled).

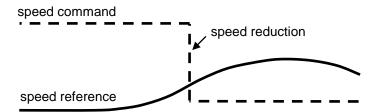


Figure 37: Normal S-curve Abort

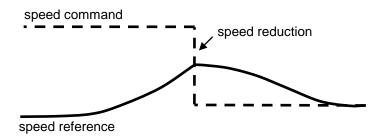


Figure 38: Optional S-curve Abort

AUTO STOP

(Auto Stop Function Enable)

When the speed command source is set to multi-step or serial (SPD COMMAND SRC (C1)=multi-step or serial), the parameter determines the stopping mode of the drive. The two selectable methods for the STOPPING MODE (C1) parameter are "Immediate" and "Ramp to stop".

The Auto Stop function determines how the drive logic will respond to a zero or non-zero speed command. The function will only work when the speed command source is either multi-step or serial (SPD COMMAND SRC (C1)=multi-step or serial).

<u>Disabled:</u> When the Auto Stop function is disabled, the magnitude of the speed command plays no part in the logical starting or stopping of the drive.

<u>Enabled:</u> When the Auto Stop function is enabled and the speed command source is either multi-step or serial, the following changes occurs to the start and stop sequence:

- Both a Run command and a non-zero speed command are required to start the drive
- Either the removal of the Run command or the setting the speed command to zero will initiate a stop.

Remember, when the auto stop function is enabled (AUTO STOP (C1)=enabled) both a non-zero multi-step/serial speed command AND the run command are required to start the drive. It makes no difference which signal is enabled first; the drive does not start until both are present. When initiating a stop, which signal is removed first does make a difference.

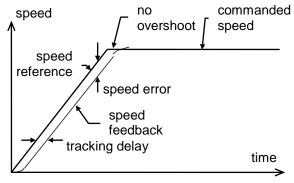
SPEED REG TYPE^{i,ii}

(Speed Regulator Type)

This switch toggles between the Elevator Speed Regulator (Ereg) and the PI Speed Regulator. Magnetek recommends the use of the Elevator Speed Regulator for better elevator performance. If this parameter is set to external regulator, the drive will be configured as a torque controller.

The source of the external torque command is determined by the EXT TORQ CMD SRC (C1) parameter. The HPV 900 Series 2 has the following three closed loop speed regulation options and an option for turning off the internal speed regulator:

- Elevator Speed Regulator (Ereg)
- PI Speed Regulator
- External Speed Regulator


The Elevator Speed Regulator is recommended for use with elevator applications but is not required. The regulator type can be changed by using the SPEED REG TYPE (C1) parameter.

Elevator Speed Regulator (Ereg)

The use of the Elevator Speed Regulator allows the overall closed loop response between speed reference and speed to be ideal for elevator applications. The desirable features of the Elevator Speed Regulator are:

- no overshoot at the end of accel period
- no overshoot at the end of decel period

One characteristic of the Elevator Speed Regulator is that during the accel / decel period the speed feedback does not match the speed reference creating a speed error or tracking delay. As an example, the Elevator Speed Regulator's speed response is shown for a ramped speed reference below.

Ereq Example

The Elevator Speed Regulator is tuned by:

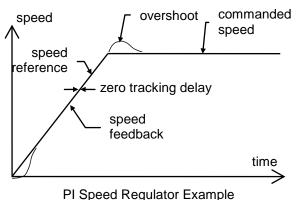
- System Inertia parameter (INERTIA(A1)), which is easy to obtain by using the drive software to estimate the system inertia.
- Response parameter (RESPONSE(A1)), which is the overall regulator bandwidth in radians per sec. This parameter defines the responsiveness of the speed regulator.

The tracking delay shown is defined as (1/RESPONSE) seconds. The tracking delay is not effected by the gain reduce multiplier.

The inner loop crossover parameter (INNER LOOP XOVER(A1)) should not need to be changed. But if the number is changed, it must satisfy the following formula:

inner				gain
loop	<	response	×	reduce
crossover				multiplier

ⁱ Parameter accessible through CLOSED LOOP (U9)


ⁱⁱ Parameter accessibly through **PM (U9)**

Parameter accessible through OPEN LOOP(U9)

PI Speed Regulator

When the Proportional plus Integral (PI) speed regulator is used, the response to a speed reference is different. As an example, the PI Speed Regulator's speed response is shown below for a ramped speed reference. With the PI speed regulator, the end of each accel and decel period, there will be an overshoot. The amount of overshoot will be a function of the defined phase margin and response parameters.

Because of this overshoot, the PI regulator is not recommended for elevator control

The PI Speed Regulator is tuned by:

 System Inertia parameter (INERTIA(A1)), which is easy to obtain by using the drive software to estimate the system inertia.

- Response parameter
 (RESPONSE(A1)), which is the overall
 regulator bandwidth in radians per sec.
 This parameter defines the
 responsiveness of the speed regulator.
- Speed Phase Margin parameter (SPD PHASE MARGIN(A1)) is used only by the PI Speed Regulator to define the phase margin of the speed regulator.

MULTI-STEP COMMAND DELAYS

When setting up an elevator, slow-down and stop switches are set at fixed locations in the shaft. Once the drive is tuned, it might require the user to move the switches in the shaft in order to minimize the time spent at leveling speed.

Under "normal" operation, the drive speed reference follows the speed command. By configuring for "delayed" operation and setting speed command 1 for a delay (MLT-SPD TO DLY 1 = MSPD 1), the recognition of the speed command change from speed command 1 to any other speed command (in this case speed command 2) will be delayed by the setting of MSPD DELAY 1 (A1) parameter.

Speed Command 2 commanded (Slow down switch activated)

Speed Command 1

Speed Command 2

Travel time

saved

(delayed)

Speed Command 1

delay time = 0.3 sec

(MSPD DELAY 1 = 0.3 sec)

Logic Inputs C2 Submenu

NOTE: The user can assign particular functions to each input terminal. Only one function per terminal is allowed and multiple terminals cannot have the same function. When a function is assigned to an input terminal, it is removed from the list of possible selections for subsequent terminals.

NOTE: When the word *Hidden* appears with the parameter description, it indicates that its appearance in the list is controlled by the

HIDDEN ITEMS setting. See details on page 108.

NOTE: When the word *Lockout* appears with the parameter description, the parameter cannot be changed when the drive is in the RUN mode.

NOTE: The *current* setting of each parameter is displayed in all caps; all other choices in the list are displayed in lower case.

Parameter	Description	Default	Default		Run
	_	ENGLISH (U3)	METRIC (U3)	Item	lock out
Logic Input 1	Logic Input 1	DRIVE	ENABLE	Υ	Y
Logic Input 2	Logic Input 2	RUN	CONTACT CFIRM	Υ	Y
Logic Input 3	Logic Input 3	FAULT RESET	RUN UP	Y	Y
Logic Input 4	Logic Input 4	UP/DWN	RUN DOWN	Y	Y
Logic Input 5	Logic Input 5	S-CUR	VE SEL 0	Y	Y
Logic Input 6	Logic Input 6	STEP	REF B0	Y	Y
Logic Input 7	Logic Input 7	STEF	STEP REF B1		Y
Logic Input 8	Logic Input 8	STEF	STEP REF B2		Y
Logic Input 9	Logic Input 9	EXTRN FAULT 1	FAULT RESET	Y	Y

choices	choice descriptions			
contact cfirm	(Contactor Confirm) Closure of the auxiliary contactor.	contacts confirming closure of the motor		
drive enable	(Drive Enable) Must be asserted to permit dri permits initiation.	(Drive Enable) Must be asserted to permit drive to run. This does not initiate run, just permits initiation.		
extrn fault 1	(External Fault 1) User input fault #1	Closure of this contact will cause the drive		
extrn fault 2	(External Fault 2) User input fault #2	to declare a fault and perform a fault		
extrn fault 3	(External Fault 3) User input fault #3	shutdown.		
extrn /flt 4	(External / Fault 4) User input fault #4. Open declare a fault and perform a fault shutdown.	(External / Fault 4) User input fault #4. Opening of this contact will cause the drive to		
fault reset	(Fault Reset) If the FAULT RESET SRC (C1) is set to EXTERNAL TB1, the drive's fault circuit will be reset when this signal is true. If the FAULT RESET SRC switch is set to AUTOMATIC, the drive's fault circuit will be reset when this signal is true and the automatic fault reset counter, defined by FLT RESETS/HOUR, will be reset to zero. NOTE: this input is edge sensitive and the fault is reset on the transition from false to true.			
low gain sel	(Low Gain Selection) If the HI/LO GAIN SRC gain mode is chosen for the speed regulator			
mains dip	(Mains Dip Selection) Requests the drive to empty MAINS DIP (C1) = EXTERNAL TB.	enter mains dip mode. Only valid when		
mech brake hold	(Mechanical Brake Hold) Auxiliary contact cl brake is in the hold mode (engaged).	osures confirming when the mechanical		
mech brake pick	(Mechanical Brake Pick) Auxiliary contacts from mechanical brake. Asserted when brake is picked (lifted).			
nc ctct cfirm	(Normally Closed Contact Confirm) Opening of the auxiliary contacts confirming closure of the motor contactor.			
no function	(No Function) Input not assigned. When this terminals, any logic input connected to that to operation.			

choices	choice descriptions
ospd test src pre-trq latch	(Overspeed Test Source) This function works only if the OVRSPEED TEST SRC switch is set to EXTERNAL TB1. A true signal on this input applies the OVERSPEED MULT to the speed command for the next run. After the run command has dropped, the drive returns to 'normal' mode and must be re-configured to perform the overspeed function again. The OVERSPEED FLT level is also increased by the OVERSPEED MULT, allowing the elevator to overspeed without tripping out on an overspeed fault. NOTE: This input must be taken false then true each time that an overspeed test is run. If the input is left in the true, it is ignored after the first overspeed test. (Pre-Torque Latch) Transition from false to true latches pre torque command.
	(Quick Stop) This functions works when quick stop input becomes true, the drive will
	ramp to zero speed quickly using the deceleration curve of DECEL RATE 3, DECEL JERK IN 3, and DECEL JERK OUT 3 settings. Once the rising edge of QUICK STOP EN occurs, the drive will force a zero speed reference and hold zero speed until either the removal of the run command or removal of the drive enable.
	Run (Logic Input)
	Drive Enable (Logic Input)
audale atam	QUICK STOP EN (Logic Input)
quick stop	
	Speed Reference
	Rising edge of QUICK STOP Rising edge of QUICK STOP EN occurs, the drive will force a zero speed reference and hold zero speed until either the removal of the run command or removal of the drive enable
run	(Run) If drive is enabled through the DRIVE ENABLE logic input, this function will start drive operation.
run down	(Run Down) If drive is enabled through the DRIVE ENABLE logic input, this function will start drive operation with negative speed commands. Note: if both RUN UP and RUN DOWN are true then the run is not recognized. Note: if DIR CONFIRM (C1) is enabled, this input will not change the polarity of the speed command and will be used to confirm the polarity of the analog speed command as well as starting the operation of the drive.
run up	(Run Up) If drive is enabled through the DRIVE ENABLE logic input, this function will start drive operation with positive speed commands. Note: if both RUN UP and RUN DOWN are true then the run is not recognized. Note: if DIR CONFIRM (C1) is enabled, this input is also used to confirm the polarity of the analog speed command as well as starting the operation of the drive.
s-curve sel 0	(S-Curve Select 0) Bit 0 of S-curve selection These two bits are used to select one of four s-curve selections. For more information, see
s-curve sel 1	(S-Curve Select 1) Bit 1 of S-curve selection S-Curve A2 Submenu on page 62
ser2 insp ena	(Serial Mode 2 Inspection Enable) defines one of the two sources of inspection run command (only serial mode 2)
step ref b0	(Step Reference Bit 0) Bit 0 of multi-step
step ref b1	(Step Reference Bit 1) Bit 1 of multi-step speed command selection
step ref b2	(Step Reference Bit 2) Bit 2 of multi-step information, see Multi-step Ref A3
step ref b3	(Step Reference Bit 3) Bit 3 of multi-step speed command selection Submenu on page 64.
trq ramp down	(Torque Ramp Down) Asserting this ramps torque output to zero at "Ramped Stop Time parameter" rate.
up/dwn	(Up/Dwn) This logic can be used to change the sign of the speed command. false = no inversion, true = inverted.

Table 15: Logic Inputs C2 Submenu

Logic Outputs C3 Submenu LOGIC OUTPUT x

(Logic Outputs 1-4)

This parameter defines the function of the logic outputs.

NOTE: The *current* setting of each parameter is displayed in all caps; all other choices in the list are displayed in lower case.

RELAY COIL x

(Relay Logic Outputs 1-2)

This parameter defines the function of the relay logic outputs.

NOTE: The *current* setting of each parameter is displayed in all caps; all other choices in the list are displayed in lower case.

ilet are displayed in letter eace.				~ .	
Description Description		Default	Hidden	Run	
Parameter	Description	ENGLISH (U3)	METRIC (U3)	item	lockout
Logic Output 1	logic output #1	READY	TO RUN	Υ	Υ
Logic Output 2	logic output #2	RUN COMMANDED		Υ	Υ
Logic Output 3	logic output #3	MTR OVERLOAD	ZERO SPEED	Υ	Υ
Logic Output 4	logic output #4	ENCOD	ER FLT	Υ	Υ
Relay Coil 1	relay output #1	FAULT	READY TO RUN	Υ	Υ
Relay Coil 2	relay output #2	SPEED REG RLS	BRAKE PICK	Υ	Υ
User LED	User LED located at the top of the operator	ALA	ARM	Y	N

choices	choice descriptions
alarm	(Alarm) The output is true when an alarm is declared by the drive.
alarm+flt	(Alarm and/or Fault) The output is true when a fault and/or an alarm is declared by the drive.
at mid speed	(At Mid Speed) The output is true when the speed is above the level set by AT MID SPEED (A1) parameter.
auto brake	(Auto Brake) The output is controlled by the Auto Brake function and is used to open the mechanical brake.
brake alarm	(Brake Alarm) The output is true when the dynamic brake resistor is in an overcurrent condition and the drive is in a run condition.
brake hold	(Brake Hold) The output is true when the brake pick confirmation is received. It is used to show the mechanical brake is remaining open. This function is used with brakes that need to have less than 100% voltage to hold the brake open.
brake pick	(Brake Pick) The output is true when the speed regulator is released and is used to open the mechanical brake.
brk hold flt	(Brake Hold Fault) The output is true when the brake hold command and the brake feedback do not match for the user specified time.
brk igbt flt	(Brake IGBT Fault) The output is true when the dynamic brake resistor is in an overcurrent condition and the drive is not in a run condition.
brk pick flt	(Brake Pick Fault) The output is true when the brake pick command and the brake feedback do not match for the user specified time.
car going dwn	(Car Going Down) The output is true when the motor moves in negative direction faster than the user specified speed.
car going up	(Car Going Up) The output is true when motor moves in positive direction faster than user specified speed.
charge fault	(Charging Fault) The output is true when the DC bus voltage has not stabilized above the voltage fault level or the charge contactor has not closed after charging.
close contact	(Close Motor Contactor) The output is true when the run command is given, the drive is enabled, the software has initialized, and no faults are present.
contactor flt	(Contactor Fault) The output is true when the command to close the contactor and the contactor feedback do not match before the user specified time.
curr reg flt	(Current Regulator Fault) The output is true when the actual current measurement does not match commanded current.
drv overload	(Drive Overload) The output is true when the drive has exceeded the drive overload curve.
encoder flt	(Encoder Fault) The output is true when the drive is declaring an encoder fault
ext fan en	(External Fan Indicator) The output is true when the drive fan is on and false when the drive fan is off.
fan alarm	(Fan Alarm) The output is true when the fan on the drive is not functioning.
fault	(Fault) The output is true when a fault is declared by the drive.
flt reset out	(Fault Reset Output) The output is true when a fault reset is requested by the drive. The drive will only issue a fault reset command when FAULT RESET SRC (C1) is set to automatic.
flux confirm	(Motor Flux Confirmation) The output is true when the drive has confirmed there is enough flux to issue a speed regulator release (the drive's estimate of flux must reach 75% of reference).

choices	choice descriptions
fuse fault	(Fuse Fault) The output is true when the DC bus fuse has blown.
ground fault	(Ground Fault) The output is true when the sum of all phase current exceeds 50% of rated current of the drive.
in low gain	(In Low Gain) The output is true when the speed regulator is in "low gain" mode.
motor trq lim	(Motor Torque Limit) The output is true when the torque limit has been reached while the drive is in the motoring mode. The motoring mode is defined as the drive delivering energy to the motor.
mtr overload	(Motor Overload) The output is true when the motor has exceeded the user defined motor overload curve.
no function	(No Function) This setting indicates that the terminal or relay will not change state for any operating condition; i.e. the output signal will be constantly false.
not alarm	(Not Alarm) The output is true when an alarm is NOT present.
over curr flt	(Motor overload current fault) The output is true when the phase current has exceeded 300% of rated current.
overspeed flt	(Overspeed Fault) The output is true when the motor has gone beyond the user defined percentage contract speed for a specified amount of time.
overtemp flt	(Heatsink Over Temperature Fault) The output is true when the drive's heatsink has exceeded 90°C (194°F).
overvolt flt	(Over Voltage Fault) The output is true when the DC bus voltage exceeds 850VDC for a 460V class drive or 425VDC for a 230V class drive.
ovrtemp	(Drive Over Temperature Alarm) The output is true when the drive's heatsink temperature has
alarm	exceeded 80°C (176°F).
phase fault	(Phase Loss) The output is true when the drive senses an open motor phase.
ramp down ena	(Ramp Down Enable) The output is true after a torque ramp down stop has been initiated by either a logic input, the serial channel, or internally by the drive. When this output is true the torque is being ramped to zero.
ready to run	(Ready to Run) The output is true when the drive's software has been initialized and no faults are present.
regen trq lim	(Regeneration Torque Limit) The output is true when the torque limit has been reached while the drive is in the regenerative mode. The regenerative mode is defined as when the motor is returning energy to the drive. When the drive is in regenerative mode, the energy is dissipated via the dynamic brake circuitry (internal brake IGBT and external brake resistor).
run commanded	(Run Commanded) The output is true when the drive is being commanded to run.
run confirm	(Run Command Confirm) The output is true after the software has initialized, no faults are present, the drive has been commanded to run, the contactor has closed and the IGBTs are firing.
speed dev	(Speed Deviation) The output is true when the speed feedback is failing to properly track the speed reference. The speed deviation needs to be above a user defined level. (Speed Dev. = reference - feedback)
speed dev low	(Speed Deviation Low Level) The output is true when the speed feedback is properly tracking the speed reference. The speed deviation needs to be within a user defined range for a user defined period of time. (Speed Dev. = reference - feedback)
speed ref rls	(Speed Reference Release) The output is true when the flux is confirmed and drive is NOT in DC injection.
spd ref rel2	 (Speed Reference Release 2) The output is true when: software initialized and no faults present drive being commanded to run (contact confirm true, if used) not in DC injection SPEED COMMAND SRC(C1) parameter = multi-step

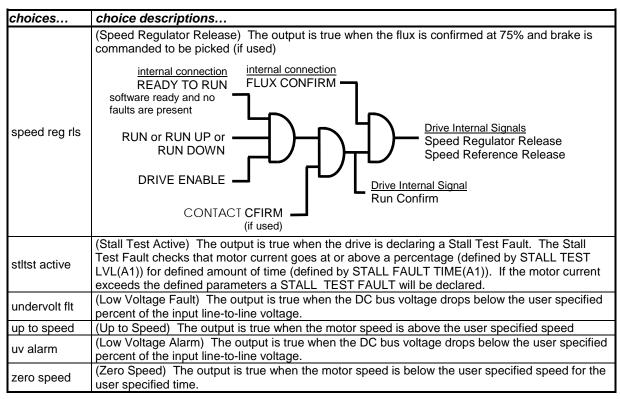


Table 16: Logic Outputs C3 Submenu

Analog Outputs C4 Submenu

ANALOG OUTPUT 1

(Analog Outputs 1) Default: SPEED REF

This parameter defines the function of the

analog output #1.

NOTE: The *current* setting of each parameter is displayed in all caps; all other choices in the

list are displayed in lower case.

ANALOG OUTPUT 2

(Analog Outputs 2)

Default: SPEED FEEDBACK

This parameter defines the function of the

analog output #2.

NOTE: The *current* setting of each parameter is displayed in all caps; all other choices in the

list are displayed in lower case.

Parameter	Description	Default		Hidden item	Run lock
	-	ENGLISH (U3)	METRIC (U3)	item	out
Analog Output 1	analog output #1	SPEED REF	SPEED COMMAND	Υ	N
Analog Output 2	analog output #2	SPEED FEEDBACK		Υ	N

choices	choice descriptions	D/A units
abs pos bin	(Absolute Position Binary) Raw absolute position reading from the absolute encoder.	counts
aux torq cmd	(Auxiliary Torque Command) Additional torque command from auxiliary source, when used.	% rated torque
bus voltage	(DC Bus Voltage Output) Measured DC bus voltage.	% of peak in
current out	(Current Output) Percent motor current.	% rated current
d-current ref	(D-Axis Current Reference) D-Axis current component that does not contribute to torque production and is generally kept at zero. It will be non-zero at no-load and flux-weakening.	%
drv overload	(Drive Overload) Percent of drive overload trip level reached.	% of trip point
flux current	(Flux Producing Current) Measured flux producing current.	% rated current
flux output	(Flux Output) Measured flux output.	% rated flux
flux ref	(Flux Reference) Flux reference used by vector control	% rated flux
flux voltage	(Flux Producing Voltage) Flux producing voltage reference.	% rated volts
frequency out	(Frequency Output) Electrical frequency.	% rated freq
mtr overload	(Motor Overload) Percent of motor overload trip level reached.	% of trip point
no function	(No Function) This setting indicates that the analog output will not change state for any operating condition; i.e. the output signal will be constantly false.	none
power output	(Power Output) Calculated power output.	% rated power
pretorque ref	(PreTorque Reference) Pre-torque reference.	% base torque
slip frequency	(Motor Slip Frequency) Commanded slip frequency.	% rated frequency
spd rg tq cmd	(Speed Regulator Torque Command) Torque command from speed regulator.	% base torque
speed command	(Speed Command) Speed command before S-Curve	% rated speed
speed error	(Speed Error) Speed reference minus speed feedback.	% rated speed
speed feedbk	(Speed Feedback) Speed feedback used by speed regulator.	% rated speed
speed ref	(Speed Reference) Speed reference after S-Curve	% rated speed
tach rate cmd	(Tachometer Rate Command) Torque command from tach rate gain function.	% base torque
theta e	(Polarity Error Signal) Magnet polarity estimation error signal used for PM motor characterization with respect to quick align.	Internal drive unit
torq current	(Torque Producing Current) Measured torque producing current.	% rated current
torg voltage	(Torque Producing Voltage) Torque producing voltage reference.	% rated volts
torque output	(Torque Output) Calculated torque output.	% rated torque
torque ref	(Torque Reference) Torque reference used by vector control.	% base torque
voltage out	(Voltage Output) RMS motor terminal voltage.	% rated volts

Table 17: Analog Outputs C4 Submenu

Display D0 Menu

Elevator Data D1 Submenu

Parameter	Description	Units	Hidden item
Speed Command	(Speed Command) Monitors the speed command before the speed reference generator (input to the S-Curve). This command comes from multi-step references, speed command from analog channel, or the serial channel.	ft/min or m/s	N
Speed Reference	(Speed Reference) Monitors the speed reference being used by the drive. This is the speed command after passing through the speed reference generator (which uses a S-Curve).	ft/min or m/s	N
Speed Feedback	(Speed Feedback) Monitors the speed feedback coming from the encoder. It is based on contract speed, motor rpm and encoder pulses per revolution. The drive converts from motor RPM to linear speed using the relationship between the CONTRACT CAR SPD (A1) and CONTRACT MTR SPD (A1) parameters.	ft/min or m/s	N
Encoder Speed	(Encoder Speed) Monitors encoder speed in rpm.	rpm	N
Speed Error ^{i,ii}	(Speed Error ^{i,ll}) Monitors the speed error between the speed reference and the speed feedback. It is equal to the following equation: $\begin{vmatrix} speed \\ reference \end{vmatrix} - \begin{pmatrix} speed \\ feedback \end{vmatrix} = \frac{speed}{error}$	ft/min or m/s ^{i,ii}	N ^{i,ii}
Est Inertia ^{i,ii}	(Estimated Inertia ^{i,ii}) Estimated elevator system inertia.	secs ^{i,ii}	N ^{i,ii}
Logic Outputs	(Logic Outputs Status) This display shows the condition of the logic outputs. (1=true 0=false) READY RIN USER FAULT TORQUE UMIT TORQUE UM	1=true 0=false	N
Logic Inputs	(Logic Inputs Status) This display shows the condition of the logic inputs. (1=true 0=false) READY RUN USER FAULT TOROUGE LUMT D1 8:55 Logic Inputs 9-0000-00008 Logic Input 9 Logic Input 1	1=true 0=false	N

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

Parameter	Description	Units	Hidden item
Rx Logic In	Serial Communications Logic Inputs	1=true 0=false	N
Start Logic ^{i,ii}	(Start Logic Status Internal logic bits. (1=true 0=false) Bit Name Description/Reason RUN_BIT Software recognized input run command BRAKE_RUN_BIT Run command after internal brake control delay DRIVE_RUN)BIT Drive Run command after all drop out delays RDY_FOR_RUN_BIT Drive is ready for run command, no faults present CLOSE_CONTACTOR_BIT Indicates the drive is enabled, run command has been received, the software is initialized and no faults are present CNTCT_CONFIRM_BIT Software indication that it has received the confirmation that the contactor has closed RAMP_DWN_EN_BIT Bit is true after a torque ramp down stop has been initiated by either a logic input, the serial channel, or internally by the drive. RUN_CONFIRM_BIT When 1, no faults are present, drive has been commanded to run, the contactor has closed and the IGBTs are firing	1=true 0=false ^{i,#}	N ^{i,#}

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

Parameter	Description	Units	Hidden item
Start Logic ^{i,#} (continued)	Bit Name Description/Reason 8 SPD_REG_REL_BIT Bit is true when the speed regulator is released. SPD_REF_REL_BIT Bit is true when the speed regulator is release if SPD REF RLS (C1) = SPD REG RLS, else, the bit is true when the brake confirm has become active 10 BRAKE_PICK_BIT Bit is true when the speed regulator is realsed and is used to open the mechanical brake 11 BRAKE_IS_PICKED_BIT Bit is true when brake confirm is active 12 BRAKE_HOLD_BIT Bit is true when the brake pick confirmation is received 13 LOW_GAIN_BIT Bit is true when the speed regulator is in	1=true 0=false ^{i,#}	N ^{i,#}
	"low gain" mode 14 DOWN_BIT Bit is true when a down direction command has been received (Serial Communications Status ^{1,II}) Serial communication status display.		
Rx Com Status ^{i,#}	Bit 15 Severity Name Description/Reason Info RX_INVALID_SETUP_ID; Invalid setup id on setup mso, 1 Info RX_INVALID_CHECKSUM; If COMM FAULT was declared because of a communication time-out. Info RX_INVALID_CHECKSUM; If COMM FAULT was declared because of a communication time-out. Info RX_INVALID_CHECKSUM; If COMM FAULT was declared because of bad message checksums. Info RX_INVALID_MESSAGE; Invalid header character in message. Info RX_INVALID_RUN_ID; Set if the Cmd_Id sent in the RUN MESSAGE is not in range. Info RX_INVALID_MONITOR_ID (Not available in Mode 2) Set if the Monitor_Id received in the run message is not in range. Info RX_INVALID_FAULT_ID; Set if the Fault_Id sent in the setup message is not in range. Info RX_FAULT_DETECTED; COMM FAULT has been detected Info Fault_Mode_2 (Not available in Mode 1) Run Removal Shutdown Mode Info Fault_Mode_2 Rescue (Not available in Mode 1) Rescue Shutdown Mode Info Fault_Mode_3 (Not available in Mode 1) Rescue Shutdown Mode Info Fault_Mode_3 (Not available in Mode 1) Rescue Shutdown Mode Info Fault_Mode_3 (Not available in Mode 1) Rescue Shutdown Mode Info Fault_Mode_3 (Not available in Mode 1) Rescue Shutdown Mode Info Fault_Mode_3 (Not available in Mode 1) Rescue Shutdown Fault Info Fault_Mode_3 (Not available in Mode 1) Rescue Shutdown Fault Info Fault_Mode_3 (Not available in Mode 1) Rescue Shutdown Fault Info Fault_Mode_3 (Not available in Mode 1 or 2) Immediate Shutdown Fault Info Fault_Mode_3 (Not available in Mode 1 or 2) Immediate Info Fault_Mode_3 (Not available in Mode 1 or 2) Immediate Info Fault_Mode_3 (Not available in Mode 1 or 2) Immediate Info Fault_Mode_3 (Not available in Mode 1 or 2) Immediate Info Fault_Mode_3 (Not available in Mode 1 or 2) Immediate Info Fault_Mode_3 (Not available in Mode 1 or 2) Immediate Info I	1=true, 0=false ^{i,#}	N ^{i,#}

Parameter accessible through **CLOSED LOOP (U9)** Operation only in Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only 102

Parameter	Description	Units	Hidden item
RX Error Count	(Serial Communication Error Counter) This function will monitor invalid serial messages and increase the count per invalid message. This is used as a diagnostic tool.	none	N
Pre-Torque Ref ^{i,ii}	(Pre-Torque Reference ^{i,ii}) Monitors the pre torque reference, coming from either analog channel #2 or the serial channel.	% rated torque ^{i,ii}	N ^{i,ii}
Spd Reg Torq Cmd ^{i,ii}	(Regulator Torque Command',") Monitors the speed regulator's torque command. This is the torque command before it passes through the tach rate gain function or the auxiliary torque command. It is the torque required for the motor to follow the speed reference.	% rated torque ^{i,#}	N ^{i,#}
Tach Rate Cmd ^{i,ii}	(Tachometer Rate Command ^{i,ii}) Monitors the torque command from the tach rate gain function, (if used).	% rated torque ^{i,ii}	N ^{i,II}
FF Torque Cmd ^{i,ii}	(Feed Forward Torque Command ^{i,ii}) Monitors the feedforward torque command from auxiliary source, when used.	% rated torque ^{i,ii}	N ^{i,II}
Enc Position	(Encoder Position) The parameter will display the position of the rotor with respect to zero. The value will change from 0 to 65535 when the motor makes one rotation in a clockwise direction and will count down from 65535 to 0 when the motor makes 1 full rotation in the counter-clockwise direction. This value is reset on every power up.	none	N
Enc Revolutions	(Encoder Revolutions) This parameter will display the number of full revolutions the motor has made. When the car is moving up, this parameter will count from 0 to 65535. When the car is moving down, this parameter will count from 0 to -65535. This value is reset on every power up.	none	N

Table 18: Elevator Data D1 Submenu

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

Power Data D2 Submenu

Parameter Parameter	Description	Units	Hidden item
DC Bus Voltage	(DC Bus Voltage) Measured voltage of the DC bus.	Volts	N
Motor Current	(RMS Motor Current Output) Monitors the RMS motor output current.	Amps	N
Motor Voltage	(Motor Voltage Output) Monitors the RMS motor terminal line-line voltage.	Volts	N
Motor Frequency	(Motor Frequency Output) Monitors the electrical frequency of the motor output.	Hz	N
Motor Torque	(Motor Torque Output) Calculated motor output torque in terms of percent rated torque.	% rated torque	N
Est No Load Curr % ⁱ	(Estimated No Load Current ⁱ) Estimated no load current of the motor calculated by the HPV 900 Series 2's adaptive tune.	% ⁱ	N ⁱ
Est Rated RPM ⁱ	(Estimated Rated RPM ^I) Estimated rated rpm of the motor calculated by the HPV 900 Series 2's adaptive tune.	RPM ⁱ	N ⁱ
Torque Reference ^{i,ii}	(Torque Reference ^{1,11}) Monitors the torque reference used by the drive control.	% rated torque ^{i,ii}	N ^{i,ii}
Flux Reference ⁱ	(Flux Reference ⁱ) Flux reference used by the vector control of the drive.	% rated flux ⁱ	N^{i}
Flux Output ⁱ	(Flux Output ⁱ) Measured value of the flux output.	% rated flux	N ⁱ
% Motor Current	(Percent Motor Current) Monitors the motor current as a percent of rated motor current.	% rated current	N
D-Curr Reference ⁱⁱ	(D-Axis Current Reference ⁱⁱ) This current is the measured D-Axis Component of Current. It will be non-zero at no-load and flux-weakening states	% ⁱⁱ	N ⁱⁱ
Power Output	(Power Output) Calculated drive power output.	KW	N
Slip Frequency ^{i,iii}	(Slip Frequency ^{I,iii}) Displays the commanded slip frequency of the motor	Hz ^{i,iii}	N ^{I,iii}
Motor Overload	(Motor Overload) Displays the percentage of motor overload trip level reached. Once this value reaches 100% the motor has exceeded its user defined overload curve and a motor overload alarm is declared by the drive.	%	N
Drive Overload	(Drive Overload) Displays the percentage of drive overload trip level reached. Once this value reaches 100% the drive has exceeded its overload curve and a drive overload fault is declared.	%	N
Flux Current	(Flux Current) Displays the flux producing current of the motor.	% rated current	Υ
Torque Current	(Torque Current) Displays the torque producing current of the motor.	% rated current	Y
Flux Voltage	(Flux Voltage) Displays the flux voltage reference.	% rated volts	Υ
Torque Voltage	(Torque Voltage) Displays the torque voltage reference.	% rated volts	Y
Base Impedance	(Base Impedance) Displays the drive calculated base impedance, which is based on the RATED MTR PWR and the RATED MTR VOLTS parameters. This value is used to calculate the Per Unit values of the system impedances (i.e. EXTERN REACTANCE and STATOR RESIST).	Ohms	N

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP(U9)** Operation only

Parameter	Parameter Description		Hidden item
Rated Excit Freq ⁱⁱ	(Rated Excitation Frequency of Motor ⁱⁱ)Motor rated frequency calculated from rated speed and pole number. This value should be close to motor nameplate value if such value is given. The only difference between two values could be result of number rounding. Large discrepancy suggests that inaccurate parameters are entered in A5 menu.	Hz ^{ji}	N ⁱⁱ
(Absolute Rotor Position) Displays the raw rotor mechanical position reading from the absolute encoder. May be helpful during installations to verify encoder is being read properly.		none ⁱⁱ	N ⁱⁱ
Drive Temp	(Drive Temperature) Displays the value of the drive heatsink.	deg C	N
Highest Temp	(Highest Temperature) Displays the highest recorded value of the drive heatsink. May be reset to zero.	deg C	N

Table 19: Power Data D2 Submenu

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP (U9)** Operation only

Utility U0 Menu

U0	Parameter	Description	Default	Choices	Hidden item	Run lock out
U1	PASSWORD	or more information, see PASSWORD on page 108.				
	ENTER PASSWORD	Allows the user to enter in a password	12345	0 - 65535	N	N
	NEW PASSWORD	Used to change the password			N	N
	PASSWORD LOCKOUT	Used to enable and disable password lockout	DISABLED	disabled enabled	Ν	N
U2	HIDDEN ITEMS	For more information, see HIDDEN ITE				
	HIDDEN ITEMS	Selects if the "hidden" parameters will be displayed on the Digital Operator.	SHOW ITEMS	show items hide items	N	N
U3	UNITS	For more information, see UNITS on pa	age 108.			
	UNITS SELECTION	Choose either Metric units or standard English measurements units	ENGLISH	english metric	N	Υ
U4	OVRSPEED TEST	For more information, see OVERSPEE	D TEST on p	page 109.		
	OVERSPEED TEST?	Allows for Overspeed Test to be enabled via the digital operator	NO	no yes	N	Y
U5	RESTORE DFLTS	For more information, see RESTORE I	DFLTS on pa	ge 110.		•
	Rst Drive Dflts	Resets all parameters to default values except parameters in MOTOR A5			N	Y
	Rst Mtr Dflts	Resets the parameters in the MOTOR A5 to the defaults defined by the MOTOR ID			N	Υ
U6	DRIVE INFO	For more information, see DRIVE INFO	on page 11	0.		
	DRIVE VERSION	Shows the software version of the drive software	, 5		N	N
	BOOT VERSION	Shows the lower level software version of the drive			N	N
	CUBE ID	Displays the cube identification number of the drive. If the main control board is replaced on the drive, this value will need to be re-entered.			N	N
	DRIVE TYPE	Displays the drive type as HPV900- Series 2.			N	N
U7	HEX MONITOR	For Magnetek personnel, see HEX MO	NITOR on pa	age 111.	N	N
U8	LANGUAGE SEL	For more information, see LANGUAGE	SEL on pag	e 111.		
	LANGUAGE SELECT	Selects language for operator text	ENGLISH	english deutsch	N	N
U9	BASICS	For more information, see BASICS on	page 111			
	Drive Mode	Selects open-loop, closed-loop, or permanent magnet drive operation	CLOSED LOOP	Open loop Closed loop PM	N	Y

U0	Parameter	Description	Default	Choices	Hidden item	Run lock out
U10	ROTOR ALIGN"	For more information, see ROTOR ALI	GN on page	111.		
	ALIGNMENT ⁱⁱ	Enabling this parameter allows the alignment procedure or value ENCODER ANG OFST (A5) to be changed	DISABLE	enable disable	N	Υ
	BEGIN ALIGNMENT ⁱⁱ	Selecting YES beings the alignment procedure	NO	yes on run no	N	Y
	ALIGNMENT METHOD ⁱⁱ	Chooses between open loop and auto align	OPEN LOOP	open loop auto align	N	Υ
U11	TIME	For more information, see TIME on page 111.				
	Year	Sets the year for the real time clock			N	N
	Month	Sets the month for the real time clock			N	N
	Day	Sets the day for the real time clock			N	N
	Hour	Sets the hour for the real time clock			N	N
	Minute	Sets the minute for the real time clock			N	N
	Second	Sets the second for the real time clock			N	N
U12	AUTOTUNE SEL"	AUTOTUNE SEL ⁱⁱ For more information, see AUTOTUNE on page 112.				
	AUTOTUNE SELECT [#]	Setting this parameter to something other than Disable allows the AutoTune feature to run.	DISABLE	disable on run yes	N	Y

Table 20: Utilities Menu

Parameter accessible through **CLOSED LOOP (U9)** Operation only Parameter accessibly through **PM (U9)** Operation only Parameter accessible through **OPEN LOOP**(**U9)** Operation only

Detailed Description

PASSWORD

(Password Function)

The following three different screens are used by the password function:

- **ENTER PASSWORD**
- **NEW PASSWORD**
- PASSWORD LOCKOUT

Password Function

The password function allows the user to select a six-digit number for a password. The password function allows the user to lockout changes to the parameters until a valid password is entered.

And with the password lockout enabled, all parameters and display values will be able to be viewed but no changes to the parameters will be allowed until a correct password is entered.

Parameter Protection

If the password lockout is enabled, the following message will appear on the display when attempting to change a parameter.

In order to change a parameter after password lockout has been enabled, the following two steps must be followed in the PASSWORD sub-menu:

- 1) A valid password must be entered in the ENTER PASSWORD screen.
- 2) The password lockout must be DISABLED in the PASSWORD LOCKOUT screen.

PASSWORD Sub-menu Protection

The following message will appear when in the PASSWORD sub-menu, if you are trying to:

- Enable or disable the password lockout without a valid password being entered.
- Enter a new password without a valid password being entered.

ENTER PASSWORD Screen

This screen allows the user to enter in a password. A valid password must be entered before enabling or disabling the password lockout or changing to a new password.

NEW PASSWORD Screen

This screen is used to change the established password.

NOTE: Remember that a valid password must be entered at the ENTER PASSWORD screen before the established password can be changed.

PASSWORD LOCKOUT Screen

This screen is used to enable and disable password lockout. The factory default for password lockout is DISABLED.

NOTE: Remember that a valid password must be entered at the ENTER PASSWORD screen before the password lockout condition can be changed.

HIDDEN ITEMS

(Hidden Items Function)

The HIDDEN ITEMS sub-menu allows the user to select whether or not "hidden" parameters will be displayed on the Digital Operator. There are two types of parameters, standard and hidden. Standard parameters are available at all times. Hidden parameters are available only if activated. The default for this function is ENABLED (meaning the hidden parameters are visible).

UNITS

(Units Selection Function)

When the UNITS SELECTION sub-menu is displayed, the user can choose either Metric units or Standard English measurements units for use by the drive's parameters.

IMPORTANT

The unit selection must be made before entering any setting values into the parameters. The user cannot toggle between units after drive has been programmed.

OVERSPEED TEST (Overspeed Test Function)

The speed command is normally limited by Overspeed Level parameter (OVERSPEED LEVEL(A1)), which is set as a percentage of the contract speed (100% to 150%). But in order to allow overspeed tests during elevator inspections, a means is provided to multiply the speed command by the Overspeed Multiplier parameter (OVERSPEED MULT(A1)).

An overspeed test can be initiated by:

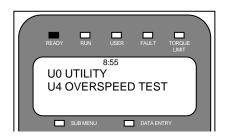
- an external logic input
- the serial channel
- directly from the digital operator

Overspeed Test via Logic Input

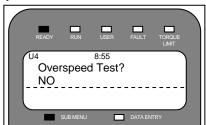
The external logic input can be used by:

- Setting the Overspeed Test Source parameter to external tb1.
- Defining a logic input terminal to ospd test src.

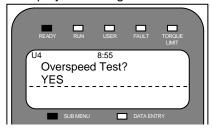
NOTE: This logic input requires a transition from false to true to be recognized - this prevents the overspeed function from being permanently enabled if left in the true state.


Overspeed Test via Serial Channel

The serial channel can be used by setting Overspeed Test Source parameter to serial.


Overspeed Test via Operator

The Digital Operator can also initiate the overspeed test by performing the following:


While the Digital Operator display shows

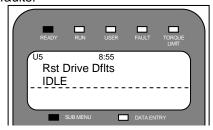
Press the ENTER key. The sub-menu LED will turn on, and the Digital Operator will display:

- Press the ENTER key again. The sun menu LED will go out and data ent LED will turn on.
- Press the up arrow or down arrow key and the display will change to:

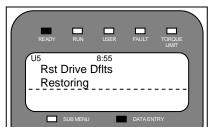
 Press the ENTER key to begin the overspeed test.

The value in the Overspeed Mult parameter is applied to the speed reference and the overspeed level, so that the elevator can be operated at greater than contract speed and not trip on an Overspeed Fault.

When the Run command is remove after the overspeed test, overspeed test reverts back to its default of NO. In order to run another overspeed test via the Digital Operator, the above steps must be repeated again.


RESTORE DFLTS (Restore Parameter Defaults)

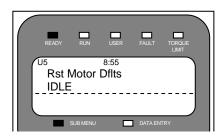
Two different functions are included in this sub-menu.


RESTORE DRIVE DEFAULTS

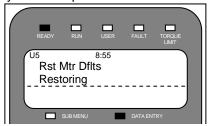
This function resets all parameters to there default values except the parameters in the MOTOR A5 sub-menu.

The following shows how to restore the drive defaults:

Press the enter key. Scroll until the following displays on the operator:



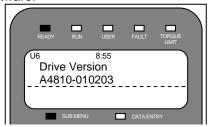
Press the enter key again. If the esc key is pressed, instead the reset action will be aborted.


RESTORE MOTOR DEFAULTS

This function resets the parameters in the MOTOR A5 sub-menu to the defaults defined by the MOTOR ID parameter in that sub-menu.

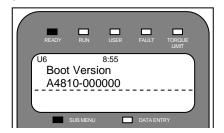
The following shows how to restore the motor defaults for the defined motor ID:

Press the enter key. Scroll until the following displays on the operator:


Press the enter key again. If the esc key is pressed, instead the reset action will be aborted.

DRIVE INFO (Drive Information)

Four different screens are included in this submenu, each display an identification number.

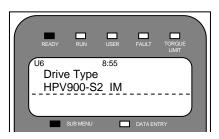

DRIVE VERSION Screen

Shows the software version of the drive software.

BOOT VERSION Screen

Shows the lower level software version of the drive.

CUBE ID Screen


Displays the cube identification number of the drive.

		ı
	cube	
model	size	ID#
HPV900-4008-2E1-01	1	4008
HPV900-4012-2E1-01	2	4012
HPV900-4016-2E1-01	2	4016
HPV900-4021-2E1-01	3	4021
HPV900-4027-2E1-01	3	4027
HPV900-4034-2E1-01	4	4034
HPV900-4041-2E1-01	4	4041
HPV900-4052-2E1-01	4	4052
HPV900-4065-2E1-01	5	4065
HPV900-4072-2E1-01	5	4072
HPV900-4096-2E1-01	5	4096
HPV900-2025-2E1-01	2	2025
HPV900-2031-2E1-01	2	2031
HPV900-2041-2E1-01	3.5	2041
HPV900-2052-2E1-01	3.5	2052
HPV900-2075-2E1-01	4	2075
HPV900-2088-2E1-01	4	2088
HPV900-2098-2E1-01	5	2098

Cube ID Numbers

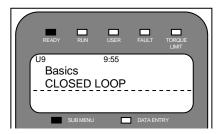
DRIVE TYPE Screen

Shows the drive software type HPV 900 Series 2

HEX MONITOR (Hex Monitor)

The hex monitor was designed for fault and parameter diagnostics. It is intended for use by Magnetek personnel.

LANGUAGE SEL


(Language Selection Function)

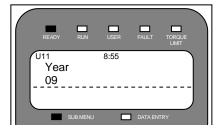
When the Language Selection sub-menu is displayed, the user can choose either English or Deutsch (German) for the operator's text.

BASICS (Basics)

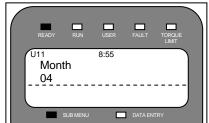
When the Basics sub-menu is displayed, the user can choose either open-loop or closed-loop operation of the drive via the Operation (U9) parameter.

ROTOR ALIGN"

(Rotor Alignment Function)

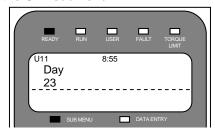

The Rotor Align submenu is meant for aligning the rotor with the magnets in the motor. For a detailed procedure see PM Start-Up Procedure on page 142.

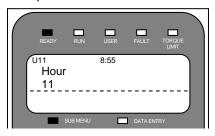
TIME


(Time Setting Function)

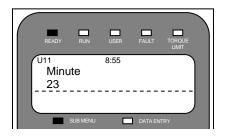
The clock located at the top of the operator under the user LED, will set after the SECOND parameter has been enter.

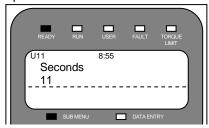
For the year, enter the last two digits corresponding to the current year. This will update and continue to be stored in the U11 submenu.


Enter the month based off of a 12 month calendar. This will automatically update and continue to be stored in the U11 submenu.


ii Parameter accessibly through **PM (U9)** Operation only

Utility U0 Menu


Next, enter the current day. This will automatically update and continue to be stored in the U11 submenu.


The hour is based off a 24 hour clock. This number will be automatically stored, however, after setting this value in the U11 submenu, it may be viewed on the top of the display and the U11 parameter will reset back to zero.

Enter the Minute next. This number will be automatically stored, however, after setting this value in the U11 submenu, it may be viewed on the top of the display and the U11 parameter will reset back to zero.

And finally enter the seconds. This number will be automatically stored, however, after setting this value in the U11 submenu, it may be viewed on the top of the display and the U11 parameter will reset back to zero.

AUTOTUNE SELⁱⁱ (AutoTune Selection)

The AutoTune feature allows for the drive to automatically measure the D and Q Axis inductances. The procedure itself may be found in the Appendix on page 148.

ii Parameter accessibly through **PM (U9)** Operation only

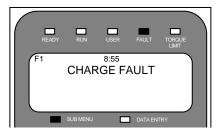
Fault F0 Menu

F0	parameter	description	hidden item	run lock out
F1	ACTIVE FAULTS	Contains a list of the active faults	N	N
F2	FAULT HISTORY	Contains a list of up to the last sixteen faults with time stamps	N	N
F3	SORTED HISTORY	Contains a list of all potential faults and the number of times they have occured	N	N
F4	RESET FAULTS			
	RST ACTIVE FLTS	Clears the active faults listed in F1 submenu	N	N
	CLR FLT HIST	Clears the Fault History listed in the F2 submenu and the Sorted Histed listed in the F3 submenu	N	N

Detailed Descriptions

The FAULTS F0 menu does not access settable parameters; instead, it provides a means of examining the drive's active faults and the fault history.

This menu also allows for clearing of active faults in order to get the drive ready to return to operation after a fault shutdown.


ACTIVE FAULTS (Active Faults)

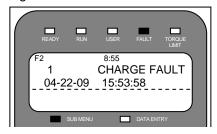
This sub-menu contains a list of the active faults.

Active Faults List

The active fault list displays and records the active faults. The faults will remain on the fault list until a fault reset is initiated.

Press the enter key to enter the active fault list. Use the up and down arrow keys to scroll through the active faults.

FAULT HISTORY (Fault History)

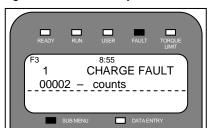

This sub-menu contains a list of up to the last sixteen faults.

NOTE: The fault history is not affected by the fault reset or a power loss. The fault history can only be cleared by a function the F4 RESET FLTS submenu

Fault History

All faults are on the fault history. The fault history displays the last 16 faults that have occurred and a time stamp indicating when each happened. The time stamp (month-day-year hour:min:sec) is set in the U11 TIME submenu.

Press the enter key to enter the fault history. Use the up and down arrow keys to scroll through the faults.


SORTED HISTORY (Sorted History)

This sub-menu contains a list of faults to occur on the drive with the number of times they have occurred since the last fault history clear.

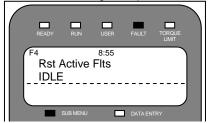
Sorted History

The sorted history displays all faults and the number of times they have occurred since that last fault history clearing. The faults are listed by occurance. The most numerous occurances will appear at the top of the list.

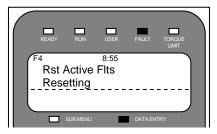
Press the enter key to enter the sorted history list. Use the up and down arrow keys to scroll through the sorted history.

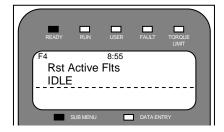
RESET FAULTS (Reset Faults)

This sub-menu allows the user to reset both the active fault and the fault history.


Rst Active Flts

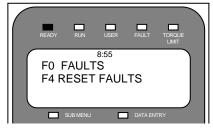
The active faults may be reset by the user function as described below.


While the digital operator display shows:

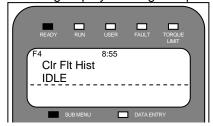

Press the enter key. The submenu LED will turn ON, and the Digital Operator will display:

Press the enter key, then use the down arrow to get the following display:

Press the enter key. The drive will reset the active fault list and display the following:

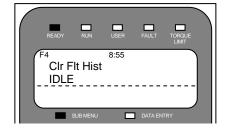


Note: if an active fault still exists on the drive, the FAULT LED will continue to be lit. Clear the condition causing the fault and attempt to reset the faults again.


CIr Flt Hist

The fault history list and sorted history list may be reset by the user function as described below.

While the digital operator display shows:


Press the enter key. The submenu LED will turn ON, using the down arrow key, scroll until the following displays on Digital Operator:

Press the enter key, then use the down arrow to get the following display:

Press the enter key. The drive will reset the active fault list and display the following:

Maintenance

Maintenance Overview

Preventive maintenance is primarily a matter of routine inspection and cleaning. The most important maintenance factors are the following:

Is their sufficient airflow to cool the drive?

Has vibration loosened any connections?

The HPV 900 Series 2 needs to have sufficient air flow for long, reliable operation. Accumulated dust and dirt accumulation can reduce airflow and cause the heat sinks to overheat. The heat sinks can be kept clean by brushing, while using a vacuum cleaner.

Periodically, check air filters on enclosure doors, clean if dirty and replace as necessary.

Periodically, clean the cooling fans to prevent dirt buildup. At the same time, check that the impellers are free and not binding in the housing.

Periodically, check all mounting and electrical connections. Any loose hardware should be tightened.

WARNING

Hazardous voltages may exist in the drive circuits even with drive circuit breaker in off position. NEVER attempt preventive maintenance unless incoming power and control power is disconnected and locked out. Also, ensure the DC Bus charge light is out.

Drive Servicing

Remember when servicing the HPV 900 Series 2: Hazardous voltages may exist in the drive circuits even with drive circuit breaker in off position.

IMPORTANT

Use extreme caution: Do not touch any circuit board, the drive, or motor electrical connections without making sure that the unit is properly grounded and that no high voltage is present.

NEVER attempt maintenance unless:

- the incoming three phase power and control power is disconnected and locked out.
- also, ensure the DC Bus charge light is out.
- even with the light out, we recommend that you use a voltmeter between (+3) and (-) to verify that no voltage is present.

If after 5 minutes the DC bus charge light remains ON or voltage remains between terminals (+3) and (-):

- First, check that the incoming three phase power is disconnected
- Once the incoming three-phase power is disconnected, it will be necessary to discharge the DC bus with a "bleeder" resistor.

IMPORTANT

Use extreme caution when connecting the bleeding resistor.

Using a 250ohm/100 watt "bleeder" resistor, connect the resistor leads to the (+3) and (-) terminals located on the brake resistor terminal.

The resistor leads should be connected for 20 seconds or until the DC bus charge light extinguishes.

Once the DC bus charge light is out, verify with a voltmeter that no voltage exists between the (+3) and (-) terminals.

It will be necessary to have the drive repaired or replaced.

Reforming Bus Capacitors

The following is a procedure for reforming the electrolytic bus capacitors.

If the drive has been stored for more than 9-months, it is recommended that the bus capacitors be reformed. After 18 months of storage it is *mandatory* that the bus capacitors are reformed.

The bus capacitors in the HPV 900 Series 2 can be reformed without removing them from the drive. To reform the capacitors, voltage must be gradually increased as follows: Increase the AC input voltage from zero at a very slow rate, approximately 7 VAC per minute, reaching full rated voltage after about an hour.

This will reform the capacitors.

Lifetime Maintenance

The HPV 900 Series 2 is an AC digital drive. It is intended to last for twenty years in the field assuming the drive is installed and run according to Magnetek specifications and recommendations. The following recommendations for part replacement to ensure twenty-year life is as follows:

- Fans 3 to 8 years depending on ambient temperature and dust
- Bus Capacitors 8 to 15 years
 depending on ambient temperature and
 elevator system load profile

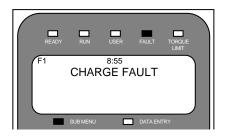
Troubleshooting

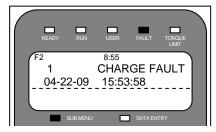

Faults and Alarms

The HPV 900 Series 2 reports two classes of warnings; these are identified as Faults and Alarms.

Faults and Fault Annunciation

A fault a severe failure that will stop a drive if it has been running and prevent the drive from starting as long as it is present. All faults require some type of action by the user to clear.


There are four means of fault annunciation. A priority message will be seen on the Digital Operator:


A priority message will overwrite what ever is currently displayed. The user can clear this message by pressing any key on the Digital Operator keypad. If another fault is present, the next fault will appear as a priority message.

NOTE: Clearing the fault priority message from the display DOES NOT clear the fault from the active fault list. The faults must be cleared by a fault reset before the drive will run.

The fault will be placed on the active fault list. The active fault list will display and record currently active faults. The faults will remain on the fault list until an active fault reset is initiated.

The fault will be placed on the fault history. The fault history displays the last 16 faults and a time stamp indicating when each happened. The fault history IS NOT affected by an active fault reset or a power loss. The fault history can be cleared via a user-initiated function.

The user can assign a fault to an external logic output.

Fault Clearing

Most faults can be cleared by performing a fault reset. The fault reset can be initiated by:

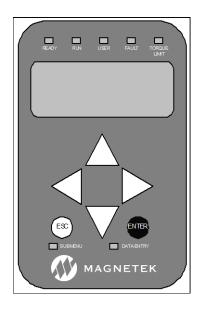
- an external logic input
- the serial channel
- automatically by the drive

CAUTION

If the run signal is asserted at the time of a fault reset, the drive will immediately go into a run state.

CAUTION

If the run signal is asserted at the time of a fault reset, the drive will immediately go into a run state. Unless using the auto-fault reset function (FAULT RESET SRC(C1)=automatic) then the run command needs to be cycled.


A fault reset can also be done via the Digital Operator.

Troubleshooting Guide

Below lists the HPV 900 Series 2's faults, alarms, and operator messages along with possible causes and corrective actions.

Note:

- fault a severe failure that will stop a drive if it has been running and prevent the drive from starting as long as it is present. All faults require some type of action by the user to clear.
- alarm only meant for annunciation. It will NOT stop the operation of the drive or prevent the drive from operating.
- operator message operator communications message. It will NOT stop the operation of the drive or prevent the drive from operating.

Status LED	Description	Possible Causes & Corrective Action
READY (red)	The drive is ready to run meaning:The software is up and ready.No faults are present.	N/A
RUN (red)	The drive is in operation. RUN & DRIVE ENABLE logic inputs true Current being sent to the motor	N/A
USER (red)	This LED is directly related to the programming of USER LED (C3)	Check Parameter Setting
FAULT (red)	The drive has declared a fault.	Fault Present in the Drive Use digital operator to check the fault
TORQUE LIMIT (red)	The drive has reached its torque limit.	Incorrect Wiring Motor phasing should match the encoder feedback phasing. If the phasing is not correct, the motor will not accelerate up to speed. It will typically oscillate back and forth at zero speed, and the current will be at the torque limit. Switch either two motor phases or swap two encoder wires (A and /A). Drive and/or Motor is Undersized Verify drive and/or motor sizing. May need a larger capacity HPV 900 Series 2 and or motor. Check Parameter Settings Check the torque limit parameters MTR TORQUE LIMIT and REGEN TORQ LIMIT (A1) − maximum 250% of drive continuous current Check speed regulator parameters RESPONSE and INERTIA (A1)

Table 21: Status LED Troubleshooting Guide

Troubleshooting

The following table lists the HPV 900 Series 2's faults and alarms along with possible causes and corrective actions.

Note:

- fault a severe failure that will stop a drive if it has been running and prevent the drive from starting as long as it is present. All faults require some type of action by the user to clear.
- alarm only meant for annunciation. It will NOT stop the operation of the drive or prevent the drive from operating.
- operator message operator communications message. It will NOT stop the operation of the drive or prevent the drive from operating.

Name	Description	Possible Causes & Corrective Action
Alignmnt is	Annunciation that alignment has	Parameter Settings
Done	finished	Alignment procedure was enabled in the
(alarm)		U10 submenu
		Drive had no errors and completed the
		requested alignment
AT Cont Flt	Drive sees an open phase during	Check Parameter Settings and Contactor
	Autotune or Auto Align	If using drive output to close contactor,
		verify it is set to CLOSE CONTACT and
		Autotune or Autoalign has been enables
		using the ON RUN selection
		Using Verify contactor is already closed if using
		Autotune or Autoalign YES selection
		Contactor or wiring hardware problem
Autotune is	Annunciation that autotune has	Parameter Settings
Done	finished	Autotune procedure was enabled in the
(alarm)		U12 submenu
		Drive had no errors and completed the
		requested autotune
	More than two messages with bad	Electronic noise interference
(alarm)	checksums have been received over	Uverify there is no electronic noise
	the serial channel.	interference
		Baud rate mismatch
		Baud rate mismatch is between drive
		and car controller. Verify baud rate
		settings.
Brake Fault	Dynamic brake resistor overcurrent.	Brake Resistor problem
		Braking Resistor is shorted. Resi
		Uhen this fault occurs while the elevator
		is in motion, it will be declared as a
		brake fault alarm until the run condition
		is removed. If the drive is in regeneration
D 1 11 1 1 EV	<u></u>	an Overvolt Fault may occur instead.
Brk Hold Flt	The brake hold command and the	Check Parameter Settings
	brake feedback did not match for the	Check BRAKE HOLD SRC (C1)
	time specified with Brake Hold Time	parameter for the correct source of
	parameter.	brake hold feedback
		♣ Check BRAKE HOLD TIME (A1)
		parameter for the correct brake hold
		time.
		If nuisance fault, the fault can be disabled by
		BRK HOLD FLT ENA (C1) parameter.

Name	Description	Possible Causes & Corrective Action
Brk Open Flt	The drive saw movement during either	Elevator Brake is not set
	the AutoTune (U11) or the Auto	Use Verify the elevator brake is clamped and
	Alignment (U10)	no visual movement occurred
		Check Parameter Settings
		Check BRK FLT LEVEL (A4)
		↓ If the brake is set, increase BRK FLT
		LEVEL (A4) until fault no longer occurs
Brk Pick Flt	The brake pick command and the	Check Parameter Settings and
	brake feedback did not match for the	Mechanical Brake Pick Signal Wiring
	time specified with Brake Pick Time	Check the correct logic input is
	parameter.	configured for the correct TB1 terminal
		and set to MECH BRK PICK (C2)
		Check wiring between the mechanical
		brake and the terminal on TB1.
		Check BRAKE PICK SRC (C1)
		parameter for the correct source of
		brake pick feedback
		Check BRAKE PICK TIME (A1)
		parameter for the correct brake hold
		time.
		If nuisance fault, the fault can be disabled by
	T. 501	BRK PICK FLT ENA (C1) parameter.
Charge Fault	The DC bus voltage has not stabilized	DC Choke Connection
	above the voltage fault level within 2	Use Check that the DC choke link is present
	seconds or the charge contactor has	or if using DC choke, check DC choke
	not closed after charging. OR	connections
	The DC bus voltage is below the UV	Low Input Voltage ↓ Check INPUT L-L VOLTS (A4) and UV
	Fault level as defined by the INPUT L-	FAULT LEVEL (A4) parameters
	L VOLTS (A4) and UV FAULT LEVEL	Disconnect Dynamic Braking resistor
	(A4) parameters	and re-try.
	(A4) parameters	 Verify proper input voltage and increase,
		if necessary, the input AC voltage within
		the proper range
		Use Proper range Check for a missing input phase
		Use Check for a missing input phase Use Check power line disturbances due to
		starting of other equipment
		Drive Accurately Reading the Dc Bus
		Measure the dc bus with a meter
		Use Compare that with the value on the
		digital operator, DC BUS VOLTAGE
		(D2)
		Drive may need to be replaced

Name	Description	Possible Causes & Corrective Action
Contactor Fit	The command to close the contactor and the contactor feedback do not match before the time specified by the Contact Flt Time parameter.	Check Parameter Settings and Contactor Check CONTACT FLT TIME (A1) parameter for the correct contactor fault time. Check wiring to logic input configured as CONTACT CFIRM Contactor hardware problem Run Command / Contact Confirm Timing Check Contact Cfirm logic input vs. Run command Increase CONTACT FLT TIME (A1) enough for both CONTACT CFIRM and RUN to be active If nuisance fault, the fault can be disabled by CONT CONFIRM SRC (C1) parameter (set to none).
Cube ID Fault	The identification number for the drive is invalid.	Hardware Problem
Curr Reg Flt	Actual current does not match the command current. The drive is commanding more motor voltage then is available on the input.	Current Regulation problem Check for a low input line Check if drive accurately reading the dc bus Measure the dc bus with a meter across terminals +3 and − Compare that with the value on the digital operator, DC BUS VOLTAGE (D2) Complete Adaptive Tune and Inertia procedure, see pages 135-138. Check for a possible motor open phase Check if contactor is closing. Check for accurate motor parameters (A5) Verify motor nameplate values are entered correctly Complete Adaptive Tune and Inertia procedure, see pages 135-138. As a last step, calculate motor parameters from motor's equivalent circuit, see page 139. Otherwise, replace the drive

Name	Description	Possible Causes & Corrective Action
DB VOLTAGE	Dynamic braking IGBT is still on ten	Too High of Braking Resistor Value
	seconds after the drive stops running	Check for no braking resistor
or		Possible Brake IGBT Failure
		Possible brake resistor is open
DB VOLTAGE		Dynamic Braking Wiring Problem
(alarm)		♣ Check dynamic brake hardware wiring
		High Input Voltage
		Decrease input AC voltage with the
		proper range (see specifications in
		technical manual)
		Use reactor to minimize voltage spikes
		Drive Accurately Reading the DC Bus
		Measure the dc bus with a meter
		Use Compare that with the value on the
		digital operator, DC BUS VOLTAGE
		(D2)
		Hardware Problem
		Replace Drive Control board
DCU data Flt	The DCI I person store sheekeyen is	Replace Drive Parameters Corrupted
DCO data Fit	The DCU parameters checksum is invalid.	Use Check & re-enter parameters and power
	ilitvalia.	cycle the drive
		↓ If re-occurs, replace Drive Control board
Dir Conflict	Declared when the speed command is	Check Parameter Settings
(alarm)	held at zero due conflict with the	
(didiiii)	analog speed command polarity and	SPEED LEVEL (A1)
	the run up / run down logic	Confirm Speed Command Polarity
	DIR CONFIRM (C1) must be enabled.	⊕ Check polarity of the analog speed
	For more information on this function,	command on analog channel #1
	see User Switches C1 Submenu on	Compare that with the RUN UP
	page 78.	(positive) and RUN DOWN (negative)
		logic input status
		If nuisance, the function can be disabled by
		DIR CONFIRM (C1) parameter.

Troubleshooting

Name	Description	Possible Causes & Corrective Action
Name Drive Ovrload	Description The drive has exceeded the drive overload curve.	Excessive Field Weakening Decrease FLUX WKN FACTOR (A1) parameter Decrease both MTR TORQUE LIMIT (A1) and REGEN TORQ LIMIT (A1) parameters Watch for the Torque Limit LED (see Table 21 on page 117), if lit the torque limits or the flux weakening factor parameters were decreased too much. Accurate Motor Parameters Verify motor nameplate values are entered correctly Complete Adaptive Tune and Inertia procedure, see pages 135-138. As a last step, calculate motor parameters from motor's equivalent circuit, see Motor Parameter Calculations on page 139. Excessive Current Draw Decrease accel/decel rate Is elevator car being held in position? (i.e. mechanical brake not releasing) Mechanical brake may not have properly released Encoder Problem Check encoder coupling: align or replace Encoder failure (replace encoder) Check encoder count parameter ENCODER PULSES (A1) Motor Problem Check for motor failure Drive Sizing Verify drive sizing. May need a larger
Duite Trans	The headside and the US of head	capacity HPV 900 Series 2
Drive Temp Alarm (alarm)	The heatsink on the drive has exceeded 85°C.	 Excessive Heat ♣ Reduce Ambient Temperature ♣ Clean heat sink ♣ Check for cooling fan failure

Name	Description	Possible Causes & Corrective Action
Encdr Crc Err	Alarm and Fault:	Noise Immunity Issue
(EnDat PM)	Absolute encoder checksum error is	Make sure that the encoder cable is
	detected. The alarm is posted if the	properly grounded.
	CRC error does not affect drive	Encoder Problem
	operation. If the error persists, the	
	alarm is converted into the fault.	broken encoder leads.
		Encoder Power Supply folding back,
		check between pins 19 and 25 for +5V
		on TB1. If supply is low, verify encoder
		voltage sense and ground sense wires
		are not connected together.
		♣ Encoder failure – replace encoder and
		REALIGN rotor.
		□ Inadequate encoder type – the absolute
		encoder option board will only support
		sin/cos absolute encoders
		Option Board Problem
		Also verify JM2 is connected to position
		1-2, or 2-3
		♣ Check power to encoder on pins 73 and
		74 of the EnDat Option card
		♣ Replace the option board
Encod Out of	Z pulse channel not pulsing within a	Sheave position changed
Tol	preset window the drive expects to	Drive must be on looking at encoder
(Incremental	see.	feedback anytime the machine moves
PM)		Redo the alignment procedure
		Encoder Problem
		□ Encoder wiring problem – check for
		broken encoder leads.

Name	Description	Possible Causes & Corrective Action
Encoder Fit (closed loop)	The drive is in a run condition and the encoder is: not functioning or not connected. or phasing is not proper with the motor.	Encoder Should Match Motor Phasing Usually drive's "HIT TORQUE LIMIT" alarm message is displayed (depending on setting of TRQ LIM MSG DLY (A1) parameter) Switch either two motor phases or swap two encoder wires (A and /A) Encoder Power Supply Loss Check 12 or 5 volt supply on terminal strip Accurate Motor Parameters Verify motor nameplate values are entered correctly Complete Adaptive Tune and Inertia procedure As a last step, calculate motor parameters from motor's equivalent circuit. Response of Speed Regulator Enter accurate INERTIA (A1) parameter Increase RESPONSE (A1) parameter Encoder Coupling Sloppy or Broken Check encoder to motor coupling Excessive Noise on Encoder Lines Check encoder connections. Separate encoder leads from power wiring (cross power lead at 90°) Other Conditions Causing Fault Check encoder count parameter ENCODER PULSES (A1) Possible motor phase loss Hardware Problem Replace Drive Control board.
EncoderFault OFF (alarm)	When the Encoder Fault is disabled (ENCODER FAULT (C1) = disabled), the drive will display the warning message "EncoderFault OFF", every time the RUN command is removed.	Check Parameter Settings Check the setting of parameter ENCODER FAULT (C1)
Extrn Fault 1	User defined external logic fault input	Check Parameter Settings and External Fault Signal Wiring Check the correct logic input is configured for the correct TB1 terminal and set to EXTRN FAULT 1 (C2) Check external fault is on the correct terminal on TB1.
Extrn Fault 2	User defined external logic fault input	Check Parameter Settings and External Fault Signal Wiring Check the correct logic input is configured for the correct TB1 terminal and set to EXTRN FAULT 2 (C2) Check external fault is on the correct terminal on TB1.

Name	Description	Possible Causes & Corrective Action
Extrn Fault 3	User defined external logic fault input	Check Parameter Settings and External Fault Signal Wiring
		♣ Check the correct logic input is
		configured for the correct TB1 terminal
		and set to EXTRN FAULT 3 (C2)
		♣ Check external fault is on the correct
		terminal on TB1.
Extrn Fault 4	User defined external logic fault input	Check Parameter Settings and External
	Opening of this contact will cause	Fault Signal Wiring
	the drive to declare the fault	♣ Check the correct logic input is
		configured for the correct TB1 terminal
		and set to EXTRN /FLT 4 (C2)
		Check external fault is on the correct
		terminal on TB1.
Fuse Fault	The DC bus fuse on the drive is open.	Hardware Problem
		Check if motor is faulty
		Check if any output phases shorted to
		ground.
		The drive may need to be replaced.
Ground Fault	The sum of all phase currents has	Improper Wiring
	exceeded 50% of the rated amps of	Reset drive faults. Retry. If cleared,
	the drive.	reconnect motor and control. If problem
		continues possible short between the
		motor windings and chassis
		grounding
HIT TORQUE	The drive has reached its torque limit.	Also, the drive may need to be replaced. Incorrect Wiring
LIMIT	The drive has reached its torque limit.	Motor phasing should match the encoder
(alarm)		feedback phasing. If the phasing is not
(diditity		correct, the motor will not accelerate up
		to speed. It will typically oscillate back
		and forth at zero speed, and the current
		will be at the torque limit.
		Switch either two motor phases or swap
		two encoder wires (A and /A).
		Drive and/or Motor is Undersized
		Verify drive and/or motor sizing. May
		need a larger capacity HPV 900 Series 2
		and or motor.
		Check Parameter Settings
		Check the torque limit parameters MTR
		TORQUE LIMIT and REGEN TORQ
		LIMIT (A1)
		Check speed regulator parameters
		RESPONSE and INERTIA (A1)
		♣ Alarm sensitivity - TRQ LIM MSG
		DELAY (A1) parameter determines the
		amount of time the drive is in torque limit
		before the alarm message is displayed.

Name	Description	Possible Causes & Corrective Action		
Motor Ovrload	The motor had exceeded the user	Verify Overload Curve Parameters		
(fault or alarm)	defined motor overload curve.	Check both OVLD START LEVEL (A5) and OVLD TIME OUT (A5) parameters.		
	Note: fault or alarm setting dependant	Excessive Field Weakening		
	on setting of MOTOR OVRLD SEL	Decrease FLUX WKN FACTOR (A1)		
	(C1) parameter.	parameter		
		Decrease both MTR TORQUE LIMIT		
		(A1) and REGEN TORQ LIMIT (A1)		
		parameters		
		Watch for the "Hit Torque Limit" alarm		
		message, if message appears the		
		torque limits or the flux weakening factor		
		parameters were decreased too much.		
		Accurate Motor Parameters		
		Verify motor nameplate values are		
		entered correctly		
		Complete Adaptive Tune and Inertia		
		procedure (see pages 135-138).		
		As a last step, calculate motor		
		parameters from motor's equivalent		
		circuit.		
		Excessive Current Draw		
		□ Decrease accel/decel rate □		
		Us elevator car being held in position?		
		(i.e. mechanical brake not releasing)		
		Mechanical brake may not have properly		
		released Encoder Problem		
		 Check encoder coupling: align or replace Encoder failure (replace encoder) 		
		Use Check encoder count parameter		
		ENCODER PULSES (A1)		
		Motor Problem		
		♣ Check for motor failure		
Mspd Tmr Flt	This fault is declared if at least two	Check Parameters Settings:		
	MLT-SPD TO DLY x (C1) parameters	⊕ Check MLT-SPD TO DLY 1 (C1)		
	are defined to the same multi-step	parameter for setting		
	speed command.	♣ Check MLT-SPD TO DLY 2 (C1)		
		parameter for setting		
		♣ Check MLT-SPD TO DLY 3 (C1)		
		parameter for setting		
		Check MLT-SPD TO DLY 4 (C1)		
		parameter for setting		
Mtr Data Flt	This fault is declared if any motor	Check parameter Settings:		
	nameplate data information in the A5			
	submenu is 0.	Check RATED MTR VOLTS (A5)		
		Check RATED EXCIT FREQ (A5)		
		♣ Check RATED MOTOR CURR (A5)		

Name	Description	Possible Causes & Corrective Action
Name OLA Endt Fit (EnDat PM)	Open Loop Alignment EnDat Fault	Phasing Problem If the motor was running smoothly immediately before the drive declared an OLA ENDT FLT, Swap two motor leads (e.g. U and W) to establish proper phasing between absolute position data (EnDat, serial) and motor. Note: Swapping encoder leads is NOT the same as swapping motor wiring. Do not swap both motor phase leads and encoder inputs at the same time. Torque Constant Scale needs to be adjusted If the motor was running rough, jerky, or stalled immediately before the drive declared an OLA ENDT FLT, increase the value located in TRQ CONST SCALE (A5). Rotor is Not Moving when Open Loop Alignment Commanded □ Verify that the brake is picked and that the car is properly balanced. □ Verify that the motor contactor is closed during the alignment. □ Verify motor parameters in A5 menu. □ Increase OLA Vq REF SCALE factor to overcome excessive static friction that may exist in the elevator. Run command was removed during Open Loop Alignment □ Verify the run command stayed active while alignment was occurring Note: This is only true when BEGIN ALIGNMENT? = ON RUN Encoder Problem
		 ♣ Encoder Froblem ♣ Encoder failure (replace encoder and REALIGN the rotor). Motor Parameter Problems ♣ Verify values in Motor (A5) menu are correct

Name	Description	Possible Causes & Corrective Action
OLA Inc Flt	Open Loop Alignment Incremental	Phasing Problem – EnDat PM
	Fault	Swap two encoder leads (e.g. A and −A)
		to establish proper phasing
		Note: Swapping encoder leads is NOT
		the same as swapping motor wiring. Do
		not swap both motor phase leads and
		encoder inputs at the same time.
		Phasing Problem – Incremental PM
		Swap two encoder leads (e.g. A and –A)
		to establish proper phasing or swap two
		motor leads (e.g. U and V)
		Encoder Problem
		Use Check encoder coupling: align or replace
		♣ Check encoder wiring
		♣ Encoder failure (replace encoder and
		REALIGN the rotor)
		Uption board failure (replace option
		board).
Overcurr Flt	The phase current exceeded 300% of	Encoder Problem
	rated current.	Under the Check encoder coupling: align or replace
		♣ Encoder failure (replace encoder)
		Motor Problem
		Possible motor lead short
		a larger capacity HPV 900 Series 2 Accurate Motor Parameters
		↓ Verify motor nameplate values are
		entered correctly
		⊕ Complete Adaptive Tune and Inertia
		procedure, see pages 135-138.
		 As a last step, calculate motor
		parameters from motor's equivalent
		circuit, see Motor Parameter
		Calculations on page 139.
		Inaccurate Parameters
		⊕ Check setting of FAST FLUX (C1)
		Disable if enabled
		Timing Issue
		□ Check Contactor Timing
		♣ Check for a steady RUN command
		(usually only able to be viewed on a
		scope)
		Hardware Problem
		The drive may need to be replaced.
Overspeed Flt	Generated when the motor has gone	Check Parameter Settings
(closed loop)	beyond the user defined percentage	Check OVERSPEED LEVEL (A1)
	contract speed for a specified amount	parameter for the correct level.
	of time.	Check OVERSPEED TIME (A1)
		parameter for the correct time.
		Unit Note: This fault is defined by Overspeed
		Level parameter and Overspeed Time
		parameter.

Name	Description	Possible Causes & Corrective Action
Overtemp Fit	The heatsink on the drive has exceeded 95°C (194°F).	Excessive Heat ♣ Reduce Ambient Temperature ♣ Clean heat sink ♣ Check for cooling fan failure
Overvolt Fit	The DC bus voltage of the drive exceeded: 850 Volts for a 460V class drive 425 Volts for a 230V class drive.	Too High of Braking Resistor Value ♣ Check for no braking resistor ♣ Possible Brake IGBT Failure ♣ Possible brake resistor is open Dynamic Braking Wiring Problem ♣ Check dynamic brake hardware wiring High Input Voltage ♣ Decrease input AC voltage with the proper range ♣ Use reactor to minimize voltage spikes Drive Accurately Reading the Dc Bus ♣ Measure the dc bus with a meter across terminals +3 and — ♣ Compare that with the value on the digital operator, DC BUS VOLTAGE (D2) Hardware Problem ♣ Replace Drive Control board
Phase Loss	The drive senses an open motor phase. The drive senses more than one motor phase crossing zero at the same time.	Motor Problem ♣ Check motor wiring ♣ Check for motor failure ♣ Check for bad contactor or contactor timing issue.
Reverse Tach	See ENCODER FLT	See ENCODER FLT
RTR NOT ALIGN (PM)	Run command given before aligning the rotor (Clears automatically)	Initial Setup Not Performed Perform rotor alignment Alignment Failed Repeat the alignment. If any fault gets posted during the alignment, the setup offset will be set out of the range causing this alignment to fault.
Ser2 Spd Flt Setup Fault 1	This fault is declared if the SER2 INSP SPD (A1) or SER2 RS CRP SPD (A1) parameters have exceeded contract speed (CONTRACT CAR SPD (A1) parameter). This fault is declared if the rated motor	
octup Fault 1	speed and excitation frequency do not satisfy: 9.6 $<$ $\begin{bmatrix} 120 \\ excitation \\ frequency \end{bmatrix}$ $ \begin{bmatrix} # \\ motor \\ speed \end{bmatrix}$ $<$ 1222.3 checks for too low or too high value of slip	Under the Check RATED EXCIT FREQ (A5) parameter for correct setting

Name	Description	Possible Causes & Corrective Action
Setup Fault 2 (closed loop)	This fault is declared if the number of poles and encoder pulses per revolution do not satisfy: $\frac{encoder}{pulses} > 64$	Check Parameters Settings: Under Check ENCODER PULSES (A1) Unparameter for correct setting Under Check MOTOR POLES (A5) parameter for correct setting
Setup Fault 3	This fault is declared if the number of poles is not an even number.	Check Parameters Settings: Under Check MOTOR POLES (A5) parameter for correct setting
Setup Fault 4 (closed loop only)	This fault is declared if the contract motor speed (in rpm) and encoder pulses/revolution do not satisfy: 300,000 (Check Parameters Settings: Check ENCODER PULSES (A1) parameter for correct setting Check CONTRACT MTR SPD (A1) parameter for correct setting
Setup Fault 5	This fault is declared if the rated motor power (in watts) and rated motor voltage do not satisfy: $ \frac{\left(\frac{rated}{motor}\right)}{\left(\frac{rated}{motor}\right)} \frac{general}{purpose} \\ \frac{current}{rating} \\ of \\ drive $	Check Parameters Settings: Check RATED MOTOR PWR (A5) parameter for correct setting Check RATED MTR VOLTS (A5) parameter for correct setting
Setup Fault 6	This fault is declared if the multi-step speed references have exceeded a defined limit, which is defined in terms of a percentage of contract speed (CONTRACT CAR SPD parameter).	Check Parameters Settings: Check SPEED COMMAND1-16 (A3) parameters, if greater than 110% of CONTRACT CAR SPD (A1) parameter
Setup Fault 7	This fault is declared if the run logic inputs are defined incorrectly. You can either choose group #1 (RUN and UP/DWN) or group #2 (RUN UP and RUN DOWN). But you cannot mix and match or this fault will be declared.	Check Parameters Settings: Check configurations of logic inputs (C2) − either RUN & UP/DWN or RUN UP & RUN DOWN
Setup Fault 8	This fault is declared if the DIR CONFIRM (C1) parameter is enabled and any of the following conditions are not met: A logic input (C2) must be assigned to RUN UP. A logic input (C2) must be assigned to RUN DOWN. The SPD COMMAND SRC (C1) parameter must be set to ANALOG INPUT Confirms proper set-up of Analog Speed Command direction confirm function	Check Parameters Settings: Check configurations of logic inputs (C2) for two logic input defined as RUN UP & RUN DOWN Verify SPD COMMAND SRC (C1) is set to ANALOG INPUT If nuisance fault and not using Up-Down Confirm function disabled by setting the DIR CONFIRM (C1) parameter to DISABLED
Setup Fault 9	This fault is declared if the same value is listed as multiple logic inputs	Check Parameters Settings: Under Check configurations of logic inputs (C2) Under Check configurations of logic inputs (C2) Under Check Parameters Settings: Under Check Par

Name	Description	Possible Causes & Corrective Action		
Setup Fault 10	This fault is declared if the Input L-L Volts is set to 000.00	Check Parameters Settings: Under Check Input L-L Volts (A4) Under Verify setting of Input L-L Volts matches measure AC Input to Drive		
Setup Fault 11	This fault is declared if ENCODER SELECT (C1) = ENDAT ABSOLUTE and the number of pulses entered in ENCODER PULSES (A1) is greater than 3125	Check Parameters Settings: Uverify the setting of ENCODER SELECT (C1) If an EnDat Absolute Encoder is used and ENCODER SELECT (C1) is set to ENDAT ABSOLUTE — verify the value placed in ENCODER PULSES (A1) is between 500 − 3125		
Short Circuit	The integrated power module is sensing an overcurrent or overtemperature condition	Overcurrent Problem ♣ Check for a possible short between the motor windings. ♣ Verify dynamic brake resistor size (could be too small) Overtemperature Problem ♣ Reduce Ambient Temperature ♣ Clean heat sink ♣ Check for cooling fan failure The drive may need to be replaced, if no other problem found.		

Name	Description	Possible Causes & Corrective Action		
Spd Dev Flt	The speed feedback is failing to	Encoder Cable not properly grounded		
(PM)	properly track the speed reference.	↓ Verify Encoder Cable is properly grounded		
` ,		using the shield clamp provided on the		
&		drive		
		Motor Runaway Condition – (PM)		
Spd Dev Alm				
		encoder coupling and repeat the alignment		
		value is uploaded or entered – enter		
		correct value or repeat the alignment		
		The absolute position encoder is not in		
		sync with motor phasing (would be		
		detected during the open loop alignment,		
		but NOT if manual or auto alignment		
		methods were used). Swap two motor		
		leads. If Encoder Flt is set after swapping the motor leads, switching encoder leads		
		(A and /A).		
		For Incremental PM an auto alignment will		
		occur at the beginning of the next run.		
		Uverify FINE TUNE OFST (A4) is 0.00 (for		
		ENDAT PM) or value consistent with		
		previous value found during Incremental		
		startup.		
		Drive and/or Motor is Undersized		
		Usually drive's "HIT TORQUE LIMIT"		
		alarm message is displayed (depending on		
		setting of TRQ LIM MSG DLY (A1)		
		parameter)		
		∀ Verify drive and/or motor sizing. May need		
		a larger capacity HPV 900 PM and/or		
		motor. Check Parameter Settings – PM		
		Usually drive's "HIT TORQUE LIMIT"		
		alarm message is displayed (depending on		
		setting of TRQ LIM MSG DLY (A1)		
		parameter)		
		Under the Check speed regulator parameters		
		RESPONSE and INERTIA (A1)		
		LVL or SPD DEV ALM LVL (A1) parameter		
		is set too low for required		
		acceleration/deceleration rate.		
		NOTE: Setting SPD DEV FLT LVL too high		
		will reduce drive's sensitivity runaway		
		conditions! Check Parameter Settings – Closed Loop		
		Usually drive's "HIT TORQUE LIMIT"		
		alarm message is displayed (depending on		
		setting of TRQ LIM MSG DLY (A1)		
		parameter)		
		Check speed regulator parameters		
		RESPONSE and INERTIA (A1)		
		□ Fault/Alarm sensitivity – SPD DEV HI LVL		
		parameter is set too low for required		
		acceleration/deceleration rate.		
	_1			

Name	Description	Possible Causes & Corrective Action		
SrI Timeout	The drive is being operated by serial communications and one of the following has occurred: Communication time-out – if the serial run bit is set and the drive does not receive a run-time message for 40 msec Bad message checksum – drive has detected three consecutive bad message checksums	Bad Serial Connection Remove and re-seat the RS-422 serial cable Check car controller serial driver board Check the serial cable connected to the drive's RS-422 port Also, the drive's control board may need to be replaced. Check Parameter Setting If not using serial communications, check SERIAL MODE (C1) = none		
(alarm)	The drive saw movement during ARB mode before ARB START TIME (A1) is active	Check Parameter Setting ↓ Lower ARB START TIME (A1) to occur before the brake lifts Possible noise issue ↓ Verify grounding shield of encoder cable is directly wired to solid ground		
Stall Fault (open loop)	Generated when the motor current goes at or above a percentage (defined by STALL TEST LVL) for defined amount of time (defined by STALL FAULT TIME).	Check Parameter Settings Check STALL TEST LVL (A1) parameter for the correct percentage of motor current Check CONTACT FLT TIME (A1) parameter for the correct time If nuisance fault, the fault can be disabled by STALL TEST ENA (C1) parameter (set to disabled) Excessive Current Draw Decrease accel/decel rate Is elevator car being held in position? (i.e. mechanical brake not releasing) Mechanical brake may not have properly released Motor Problem Check for motor failure Accurate Motor Parameters Verify motor nameplate values are entered correctly Complete Adaptive Tune and Inertia procedure As a last step, calculate motor parameters from motor's equivalent circuit		
Tq Lim 2Hi 4cube	The torque limits (based on the defined motor) exceed the cube's capacity	Check Parameters Settings ↓ Verify motor nameplate values are entered correctly in the A5 sub-menu ↓ Decrease both MTR TORQUE LIMIT (A1) and REGEN TORQ LIMIT (A1) parameters Drive Sizing ↓ Verify drive sizing. May need a larger capacity HPV 900 S2		

Name	Description	Possible Causes & Corrective Action		
Undervolt Flt	Generated during a run condition when the DC bus voltage drops below the user specified percent of the input line-to-line voltage. The input line-to-line voltage is specified by the Input L-L Volts parameter and the fault level is specified by the Undervoltage Fault Level parameter.	Low Input Voltage Check INPUT L-L VOLTS (A4) and UV FAULT LEVEL (A4) parameters Disconnect Dynamic Braking resistor and re-try. Verify proper input voltage and increase, if necessary, the input AC voltage within the proper range Check for a missing input phase Check power line disturbances due to starting of other equipment Drive Accurately Reading the Dc Bus Measure the dc bus with a meter across terminals +3 and − Compare that with the value on the digital operator, DC BUS VOLTAGE (D2)		
		Hardware Problem		
Uv Alarm (alarm)	Generated during a run condition when the DC bus voltage drops below the user specified percent of the input line-to-line voltage. The input line-to-line voltage is specified by the Input L-L Volts parameter and the fault level is specified by the Undervoltage Alarm Level parameter.	Low Input Voltage Check INPUT L-L VOLTS (A4) and UV ALARM LEVEL (A4) parameters Disconnect Dynamic Braking resistor and re-try. Verify proper input voltage and increase, if necessary, the input AC voltage within the proper range Check for a missing input phase Check power line disturbances due to starting of other equipment Drive Accurately Reading the Dc Bus Measure the dc bus with a meter across terminals +3 and − Compare that with the value on the digital operator, DC BUS VOLTAGE (D2) Hardware Problem The drive may need to be replaced.		
V/Hz Fault (open loop)	This fault is following two formulas are not satisfied: $ \begin{pmatrix} MOTOR \\ MIN \\ VOLTS : \end{pmatrix} < \begin{pmatrix} MOTOR \\ MID \\ VOLTS \end{pmatrix} < \begin{pmatrix} RATED \\ MTR \\ VOLTS \end{pmatrix} $ $ \begin{pmatrix} MOTOR \\ MID \\ FREQ \end{pmatrix} < \begin{pmatrix} RATED \\ MTR \\ VOLTS \end{pmatrix} $	Check Parameters Settings: Check RATED MTR VOLTS (A5) parameter for correct setting Check MOTOR MID VOLTS (A5) parameter for correct setting Check MOTOR MIN VOLTS (A5) parameter for correct setting Check RATED EXCIT FREQ (A5) parameter for correct setting Check MOTOR MID FREQ (A5) parameter for correct setting Check MOTOR MID FREQ (A5) Check MOTOR MIN FREQ (A5)		

Closed Loop Adaptive Tune

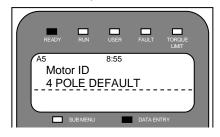
The adaptive tune automatically calculates, under certain operating conditions, the percentage no load current and the rated rpm (slip frequency). The HPV 900 Series 2 software uses these two adaptive tune calculated values to obtain the maximum performance from the motor.

Adaptive Tune Operating Conditions

The HPV 900 Series 2 software estimates the motor's percent no load current and the motor's rated rpm. These estimated values are only estimated around a window of $\pm 25\%$ of the parameter settings for:

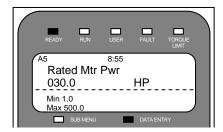
- percent no-load current (% NO LOAD CURR)
- rated motor speed (RATED MTR SPEED)

The adaptive tune will estimate:


- the motor's percent no load current when the motor torque is below 20%.
- the motor's rated rpm when the motor torque is above 30%.

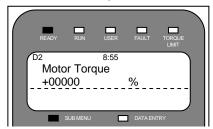
Using the Adaptive Tune to Obtain Maximum Motor Performance

The following is a step-by-step procedure to optimize the window around which the adaptive tune will estimate its two values. NOTE: Although the listed speeds are recommended, the adaptive tune procedure can be ran initially at lower speeds, as long as the speed is greater than 10% of contract speed.


Initial Set-up

 Select a valid Motor ID or one of the two default motors (either 4 or 6 pole) for the MOTOR ID parameter

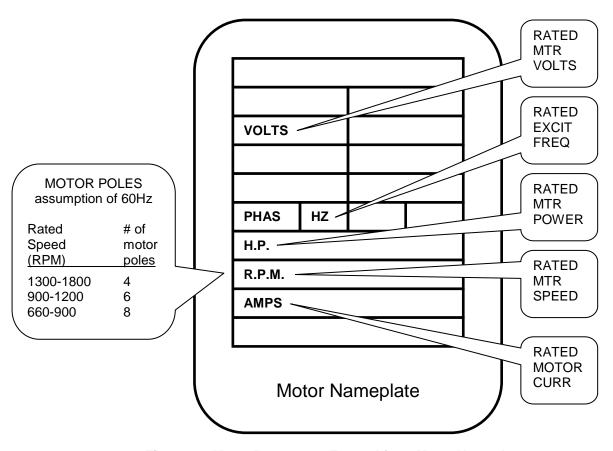
The default motor selections for the motor id will place a zero values in the motor nameplate parameters (see Figure 39). This selection will also load nominal values for the other motor parameters listed in Table 22

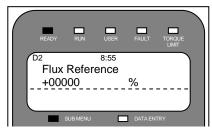

 Now, enter the motor nameplate data into the needed motor nameplate parameters (see Figure 39)

Tuning Motor No-Load Current

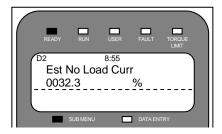
With a <u>balanced car, run the car at 70%</u> <u>contract speed</u> from top floor to the bottom floor then back to the top floor.

 During these runs verify under DISPLAY MENU - POWER DATA D2 that the MOTOR TORQUE is between ±15%. If the value is larger then ±15% the car is not balanced correctly.

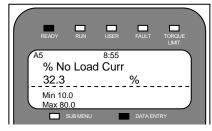



Figure 39: Motor Parameters Entered from Motor Nameplate

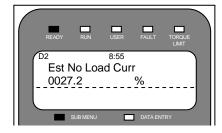
description	parameter	4 pole dflt	6 pole dflt
percentage no load current	% NO LOAD CURR	35.0 %	45.0 %
stator leakage reactance	STATOR LEAKAGE X	9.0 %	7.5 %
rotor leakage reactance	ROTOR LEAKAGE X	9.0 %	7.5 %
stator resistance	STATOR RESIST	1.5 %	1.5 %
motor loss - motor iron loss	MOTOR IRON LOSS	0.5 %	0.5 %
motor loss - motor mechanical loss	MOTOR MECH LOSS	1.0 %	1.0 %
flux curve - flux saturation break point	FLUX SAT BREAK	75 %	75 %
flux curve - flux saturation slope #1	FLUX SAT SLOPE 1	0 %	0 %
flux curve - flux saturation slope #2	FLUX SAT SLOPE 2	50 %	50 %

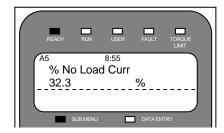

Table 22: Nominal Values for Motor Parameters

NOTE: If you are having problems getting the motor torque under 15% the cause may be:


- No compensation chains
 If the elevator system has no compensation chains, achieving balanced condition may be difficult. In that case, the MOTOR TORQUE should be between ±15% for as much of the run as possible.
- High elevator system friction
 If the elevator system has high friction, achieving motor torque of under 15% may be difficult. In that case, have less than the balance car weight in the car, thus letting the counterweight help to overcome the frictional losses. In this case, the you should look only at the estimated values in the up direction and run the car in the up direction a number of times before changing any parameter settings.
- Also, verify that the FLUX REFERENCE is 100%. If the value is not equal to 100% reduce the speed to less then 70% contract speed and check again.

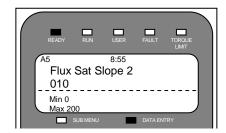
 While still performing these top / bottom runs observe under DISPLAY MENU -POWER DATA D2 the EST NO LOAD CURR value.


Enter this estimated value into the motor parameter.


- Continue iterating the above two steps until the two values are within 2%. If the values do not converge after two iterations, verify the information entered in the initial set-up is correct.
- After the values converge, again verify the MOTOR TORQUE < 15% and the FLUX REFERENCE = 100%.

Tuning Motor's Flux Saturation Curve
With a balanced car, run the car at 100%
contract speed from top floor to the bottom
floor then back to the top floor.

 During these top / bottom runs observe under DISPLAY MENU - POWER DATA D2 the EST NO LOAD CURR value.

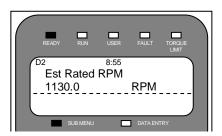


 Compare the displayed value EST NO LOAD CURR with the value entered for % NO LOAD CURR under the ADJUST MENU - MOTOR A5

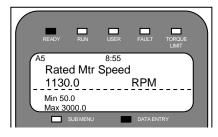
If the EST NO LOAD CURR is 2% larger than the % NO LOAD CURR then, decrease the FLUX SAT SLOPE 2 by 10%.

 If the EST NO LOAD CURR is 2% smaller than the % NO LOAD CURR then, increase the FLUX SAT SLOPE 2 by 10%.

NOTE: If the EST NO LOAD CURR and % NO LOAD CURR are within 2% of each other, then continue on to Tuning the Rated Motor RPM.


 Continue iterating FLUX SAT SLOPE 2 in 10% increments until the EST NO LOAD CURR and % NO LOAD CURR are within 2% of each other.

NOTE: Remember change only the FLUX SAT SLOP 2 parameter DO NOT change any other parameter (these were fixed in the previous steps).


Tuning Rated Motor RPM

With a <u>full-load car</u>, <u>run the car at 100%</u> <u>contract speed</u> from top floor to the bottom floor then back to the top floor.

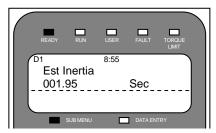
 During these top / bottom runs observe under DISPLAY MENU - POWER DATA D2 the EST RATED RPM value.

Enter this estimated value into the motor parameter.

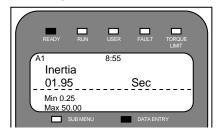
 Continue iterating the above to steps until the two values are within 3 RPM.

NOTE: Remember <u>change only the RATED MTR SPEED</u> parameter DO NOT change any other parameter (these were fixed in the previous steps).

Estimating System Inertia


The HPV 900 Series 2 software can be used to calculate the inertia of the entire elevator, which is used for accurate tuning of the speed regulator.

The following is a step-by-step procedure for using the HPV 900 Series 2 to estimate the elevator system inertia.


Using the Software to Estimate the System's Inertia

With a <u>balanced car, run the car at 100%</u> <u>contract speed</u> from top floor to the bottom floor then back to the top floor.

 Observe the EST INERTIA under DISPLAY MENU - ELEVATOR DATA D1 for both the down and up direction.

 Average the two values and enter the DRIVE A1 parameter.

Motor Parameter Calculations - Induction

The default motor selections (4 POLE DFLT or 6 POLE DFLT will load nominal values (see Table 6 on page 72) for the following motor parameters: % NO LOAD CURR, STATOR LEAKAGE X, ROTOR LEAKAGE X, STATOR RESIST, MOTOR IRON LOSS, and MOTOR MECH LOSS.

Most of the time the nominal values will work just fine. But in some cases, these motor parameter values must be precisely calculated.

Motor Manufacturer Data

The following is list of data that would be needed from a motor manufacturer in order to precisely calculate the motor parameters.

- 1. Rated voltage
- 2. Rated frequency
- 3. Rated kW or HP
- 4. Rated (full-load) Current (under conditions 1,2 and rated torque)
- 5. Power factor (under 1,2 and rated torque)
- 6. Rated RPM (under 1,2 and rated torque)
- 7. No load Current under 1 and 2
- 8. Iron Loss under 1 and 2
- 9. Mechanical loss under 1 and 2
- 10. Per phase Stator resistance
- 11. Stator leakage Inductance
- 12. Rotor leakage Inductance

Calculation from the Motor's Equivalent Circuit

This section details how to calculate the following HPV 900 Series 2 motor parameters, which are entered as a percentage of the base impedance:

- Stator Leakage Reactance (STATOR LEAKAGE X)
- Rotor Leakage Reactance (ROTOR LEAKAGE X)
- Stator Resistance (STATOR RESIST) Also.
- Motor Iron Loss (MOTOR IRON LOSS)
- Motor Mechanical Loss (MOTOR MECH LOSS)
- Initial value for Percentage No Load Current (% NO LOAD CURR)

The following data is required:

- Rated motor power in KW (or HP)
- Rated motor frequency (f)
- Rated motor current (I_{rated})
- Rated motor line-to-line voltage (V_{I-I})
- Equivalent single-phase circuit of the motor

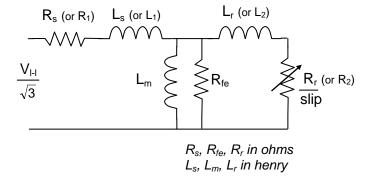


Figure 40: Equivalent single-phase circuit of the motor (Y connected)

Calculate Base Impedance

Calculate Z_{base} (base impedance)

$$Z_{base} = \frac{V_{l-l}^2}{power (in kW) \times 1000}$$

Note: $KW = HP \times 0.746$

Calculate Stator Resistance

Calculate R_s (STATOR RESIST) as a percentage of the base impedance

$$R_s(\%) = \frac{R_s \quad (in \text{ ohms})}{Z_{hase}} \times 100$$

Note: R_s is per phase (Y connected)

Calculate Stator Reactance

Calculate L_s (STATOR LEAKAGE X) as a percentage of the base impedance

$$L_{\rm s}(\%) = \frac{2\pi f \times L_{\rm s} \quad (in \, henry)}{Z_{\rm base}} \times 100$$

Note: if XL_s are available then do not use $(2\pi f)$ and L_s is per phase (Y connected)

Calculate Rotor Reactance

Calculate L_r (ROTOR LEAKGE X) as a percentage of the base impedance

$$L_r(\%) = \frac{2\pi f \times L_r \quad (in henry)}{Z_{hase}} \times 100$$

Note: if XL_r are available then do not use $(2\pi f)$ and L_r is per phase (Y connected)

Calculate Motor Iron Loss

Calculate Motor Iron Loss (MOTOR IRON LOSS) as a percentage of the motor's rated power

% Iron Loss =
$$\frac{V_{l-l}^2 \times \frac{1}{R_{fe} (in \text{ ohms})}}{power (in KW) \times 1000} \times 100$$

% Iron Loss =
$$\frac{\text{total iron loss (in kW)}}{\text{power (in KW)} \times 1000} \times 100$$

Note: KW = HP \times 0.74 and R_{fe} is per phase (Y connected)

Calculate Motor Mechanical Loss

Calculate Motor Mechanical Loss (MOTOR MECH LOSS) as a percentage of the motor's rated power

% Mechanical Loss =
$$\frac{\text{total loss (in kW)}}{\text{power (in KW)} \times 1000} \times 100$$

Note: $KW = HP \times 0.746$

Calculate Percentage No Load Current

Calculate Percentage No Load Current (%NO LOAD CURR) as a percentage of the motor's rated current

% no load current =
$$\frac{\left(\frac{V_{l-l}}{\sqrt{3}}\right)}{2\pi f \times L_m \times I_{rated}}$$

Note: if XL_m are available then do not use $(2\pi f)$ and L_m is per phase (Y connected)

After this initial value is entered, use the adaptive tune procedure (see Adaptive tune on page 135) to properly tune.

Motor Parameter Calculations – Permanent Magnet

There are times when the motor nameplate data does not contain rated motor speed or possibly does not contain motor excitation frequency.

If given rated motor speed and the number of poles, use the following calculation:

$$\frac{\text{(# of poles)} \text{Rated Motor Speed}}{2*60} = \begin{pmatrix} \text{Motor Excitation} \\ \text{Frequency} \end{pmatrix}$$

If given rated excitation frequency and the number of poles, use the following calculation:

$$\frac{(2*60)(Motor Excitation Frequency)}{(\# of poles)} = \begin{pmatrix} Rated \\ Motor \\ Speed \end{pmatrix}$$

If given rated excitation frequency and the rated motor speed, use the following calculation:

$$\frac{(2*60)(Motor\ Excitation\ Frequency)}{(Rated\ Motor\ Speed)} = \begin{pmatrix} \# \\ of \\ Poles \end{pmatrix}$$

PM Start-Up Procedure

The following is a recommended PM start-up procedure:

EnDat Encoder Set-Up

 Verify the absolute encoder option card has been installed correctly. And the encoder has been selected and installed in accordance with the following:

Electrical interference and mechanical speed modulations are common problems that can result in improper speed feedback getting to the drive. To help avoid these common problems, the following electrical and mechanical considerations are suggested.

IMPORTANT

Proper encoder speed feedback is essential for a drive to provide proper motor control.

Electrical considerations

- Use one of the following Heidenhain EnDat EncodersECN113, ECN1313, ECN413, or ROC413
- Follow encoder manufacturer's mounting and wiring recommendations
- Use Heidenhain extension Cable p/n 309778-xx (with xx less than or equal to 15) to connect Encoder to Drive

Connect Encoder Cable using a Heidenhain extension cable per Figure 41 and the encoder cable shield.

Note: For Heidenhain cable 309778-xx, see **Figure 42** for cable connections.

Additional jumpers on the EnDat Encoder Card allow for encoder lengths up to 300ft long. For Encoder Cables greater than 50ft, JM1 should be set in position 2-3. Also, if the sense wires are connected on pins 75 and 76, the drive will automatically adjust its power output on pins 73 and 74. To use this feature of the drive, verify the position of JM2 and JM3 are both set to 2-3.

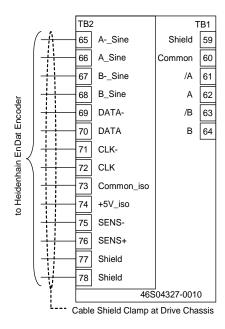


Figure 41: EnDat Encoder Connections

Yellow/Black	TB2		7	ТВ1
	65	ASine	Shield	59
Green/Black	66	A Sine	Common	60
Red/Black	67	B- Sine	/A	61
Blue/Black	Ħ	_		H
Pink	68	B_Sine	A	62
	69	DATA-	/B	63
Gray	70	DATA	В	64
Yellow	71	CLK-		
Violet	72	CLK		
White/Green	ä			
Brown/Green	73	Common_iso		
	74	+5V_iso		
White	75	SENS-		
Blue	76	SENS+		
	77	Shield		
	78	Shield		
		46S	04327-001	0

Figure 42: Heidenhain Cable Color Code

i only valid when ENCODER SELECT (C1) = ENDAT

Incremental Encoder Set-Up

- 1) Verify the encoder has been selected and installed in accordance with the following:
 - Supply Voltage:12VDC or 5VDC
 - Capacity: 200mA or 400mA
 - PPR: 600 40,000
 - Maximum Frequency: 300 kHz
 - Input:2 channel quadrature
 - 5 or 12 volts dc differential (A, /A, B, /B, Z, /Z)

Electrical interference and mechanical speed modulations are common problems that can result in improper speed feedback getting to the drive. To help avoid these common problems, the following electrical and mechanical considerations are suggested.

IMPORTANT

Proper encoder speed feedback is essential for a drive to provide proper motor control.

Electrical considerations

- Use a 2 channel quadrature incremental encoder with Z-Pulse
- Follow encoder manufacturer's mounting and wiring recommendations

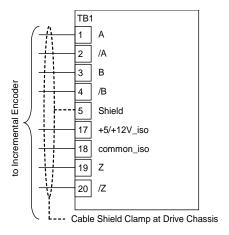


Figure 43: Incremental Encoder Connections

Mechanical considerations

- Use direct motor mounting without couplings
- Use hub or hollow shaft encoder with concentric motor stub shaft
- If possible, use a mechanical protective cover for exposed encoders
- Enter / Verify the encoder pulses entered in the ENCODER PULSES (A1) parameter from the encoder nameplate.

Motor Parameter Set-Up

- 1) Verify the following parameters are set correctly with the motor nameplate data:
 - Motor Id (A5)
 - Rated Motor Pwr (A5)
 - Rated Mtr Volts (A5)
 - Rated Motor Curr (A5)
 - Motor Poles (A5)
 - Rated Mtr Speed (A5)
- 2) Verify D Axis Induct (A5) and Q Axis Induct (A5) are between 5 and 40 mH

Hoistway Parameter Set-Up

- 3) Enter / Verify following hoistway parameters:
 - Contract Car Speed (A1)
 - Contract Mtr Speed (A1)

Incremental Control of Permanent Magnet machines

There are a couple of considerations when running permanent magnet machines with an incremental encoder. When initially starting an incrementally controlled PM machine, an alignment still needs to be done to determine the rotor position. After an alignment has been done, run the car at 40% of contract car speed to verify alignment is proper. Once proper alignment has been established, the drive will auto correct alignment using the Z-pulse channel of the encoder.

WARNING

If the motor shaft is rotated at any time while the drive is not reading the encoder (i.e. drive is off and free fall is done), an alignment procedure needs to be redone.

At the first run after power up, the drive will take a couple of seconds and redo the auto alignment to verify alignment. This will be done with the brake set and the contactor closed. The drive will not assert SPD REG RLS and BRAKE PICK until after the auto alignment is completed.

In addition, if the drive receives a SPD DEV FAULT or ENCODER FLT, after the fault is cleared, upon the next requested run, the drive will redo an auto alignment. The drive will always accept a new tuned value after SPD DEV FLT, but will compare against the previous working value after power-up or ENCODER FLT.

Furthermore, if the drive is pulling more current than expected after an alignment and outside systems items have been checked, the user may fine tune the alignment by changing the value of FINE TUNE OFST (A4). See FINE TUNE PROCEDURE on page 149.

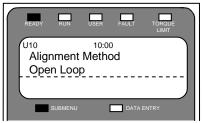
Rotor Alignment Procedure

Magnetek offers two (2) methods of initial rotor alignment with both an absolute encoder and an incremental encoder. These include Open Loop Alignment and Auto Alignment. A third method, Manual Alignment, is only valid when using an absolute encoder (EnDat). Open Loop Alignment requires the car to be in a fully balanced condition. Auto Alignment requires the brake to be set while it controls current into the motor. For Manual Alignment the encoder value must be known and may be placed into the ENCODER ANG OFST (A5) parameter. The procedures for each method may be found on the following pages:

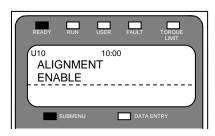
- Open Loop Alignment Procedure may be found on page 144
- Auto Alignment Procedure may be found on page 146
- Manual Setup Methodⁱ may be found on page 147

Open Loop Alignment

- In order to accurately measure the alignment, the motor has to operate in a no-load condition. This can be achieved by...
 - a. Removing the ropes from the sheave of the motor


or

- b. Balancing the car in the middle of the hoistway. With the car balanced and positioned in the middle of the hoistway, lift the mechanical brake with the drive off and verify the car is balanced. If the car moves adjust the weights in the car accordingly (more weights if the car moves in an upward direction and less weights if the car moves in a downward direction). Note: If the car is not properly balanced, finding initial position in the PM motor will not work.
- 2) Run the Open Loop Alignment (U10) to determine the position of the motor poles.


i only valid when ENCODER SELECT (C1) = ENDAT

Press Enter, then the UP Arrow to display:

Verify ALIGNMENT METHOD is set to OPEN LOOP.

Scroll to ALIGNMENT and press Enter to change parameter ALIGNMENT from DISABLE to ENABLE. Press Enter.

Press the down arrow to start the alignment procedure. The Operator will display:

Note: If the operator displays the following screen, verify ALIGNMENT (U10) is set to enable, there are no active faults, and the drive is not in a RUN mode.

Press Enter to change the data from NO to either **YES** or **ON RUN**.

Note: For either selection, any speed command issued to the drive will be ignored, however it may be necessary for the car controller to anticipate the motor moving at 1/8th rated motor speed.

- If YES is selected, the motor will immediately start applying current to the motor and calculating the alignment value.
- 4) If **ON RUN** is selected, the drive expects the following items to occur:
 - a. Car Controller asserts DRIVE ENABLE
 - b. Car Controller issues Run Command
 - Drive asserts SPD_REG_RLS and CLOSE_CONTACT (all other outputs will operate as programmed and have no special status or benefit during the Alignment Procedure)
 - d. Motor Contactor closes
 - e. Drive asserts BRAKE_PICKED, if used
 - f. Brake is lifted
- 5) If ropes are attached, car will now be hanging balanced in hoistway
- 6) Drive starts the Open Loop Alignment running at approximately 1/8th of the Contract Car Speed (A1)
- 7) When the Alignment is finished, the drive will go to zero speed and simulate removal of the run command (i.e. SPD REG RLS = 0 (false); CLOSE CONTACT = 0 (false)) even if Run Command is still being asserted
- 8) Run Command is removed

During the test, the motor should rotate for about four seconds and the RUN light will be lit for the duration of the procedure.

- Erratic movement of the motor may occur during acceleration and deceleration segments of the alignment, but constant speed operation will be smooth.
 If the fault ENCDR CRC ERRⁱ is displayed, verify the encoder wiring as shown in Figure 41. Also verify JM2 is connected to position 1-2, or 2-3. Retry alignment procedure.
- If the alarm SPD DEV ALM is displayed, increase the value of SPD DEV ALARM LVL (A1) then retry procedure to see what fault the drive may actually be getting. The SPD DEV ALM will not allow the alignment procedure to finish and must be moved out of the way to proceed.

- If the fault SPD DEV FLT is displayed, first, verify the shield of the encoder cable is properly grounded using the provided clamp on the drive. Then retry the alignment procedure. If the fault still exists, increase SPD DEV FLT LVL (A1), and then retry alignment procedure.
- If the fault OVERCURR FLT¹ is displayed; decrease ALIGN VLT FACTOR (A4) and retry alignment procedure
- If OLA ENDT FLT¹ occurs while BEGIN ALIGNMENT? Was set to ON RUN, verify the run command was not removed before the alignment was complete. In addition, verify the brake is open and the contactor is closed.
- If the motor was running rough, jerky, or stalled immediately before the drive declared an OLA ENDT FLT¹, increase the value located in TRQ CONST SCALE (A5).

If the motor was running smoothly immediately before the drive declared an **OLA ENDT FLT**¹, swap two motor leads (e.g. U and W) to establish proper phasing between absolute position data (EnDat, serial) and motor.

Note: Only swap the two motor leads. This is not the same as swapping two encoder leads.

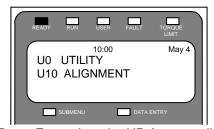
 If fault OLA INC FLT occurs, swap two encoder leads (e.g. A and -A) to establish proper phasing between incremental position data and motor.

Note: When using an EnDat absolute encoder, the user may not swap 2 motor leads to clear the fault. A and –A must be changed. When using an Incremental encoder, either the motor wires or the encoder wires may be changed.

9) View the value of ENCODER ANG OFST(A5). If the value is 30000, the alignment procedure did not work and must be redone. When using an incremental encoder, ENCODER ANG OFST (A5) will auto fill with 00000. Otherwise, record value of ENCODER ANG OFST (A5).

ENCODER ANG OFST =	

- 10) Run motor at 20% contract speed and verify alignment is correct.
- If ropes are not attached, set INERTIA (A1) to 0.25 seconds

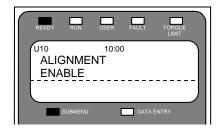

only valid when ENCODER SELECT (C1) = ENDAT

- If the SPD DEV FLT occurs, check if TORQ CURR (D2) is greater than 5% (>5%). If this is the case, repeat the alignment procedure.
- 11) Put ropes back onto the sheave, if necessary and run the motor on inspection speed and verify the direction requested is the same as the direction of the motor.
- 12) If the directions do not coincide with each other, change MOTOR ROTATION parameter in C1.
- Run the drive in inspection speed up and down the hoistway.

Auto Alignment Procedure

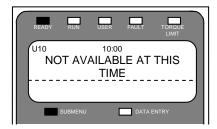
Auto Alignment is a function that will calculate the alignment angle without the need to spin the motor. This procedure may be done with the brake set and the ropes on. This is especially useful for replacement encoders. Auto Alignment may be enabled two separate ways, one way is to enable the function through the operator and the other is to enable Auto Align by giving the drive a run command. In order for the function to properly work, all faults must be cleared, the brake must be set and the motor contactor must pull in.

- In order to accurately measure the alignment, the brake must be set and the motor contactor must be closed.
 Depending on the method used for enabling Auto Alignment, drive signals may be used in conjunction with the contactor and the brake.
- 2) Run the Auto Alignment (U10) to determine the position of the motor poles.



Press Enter, then the UP Arrow to display:

Verify ALIGNMENT METHOD is set to AUTO ALIGN.


Scroll to ALIGNMENT and press Enter to change parameter ALIGNMENT from DISABLE to ENABLE. Press Enter.

Press the down arrow to start the alignment procedure. The Operator will display:

Note: If the operator displays the following screen, verify ALIGNMENT (U10) is set to enable, there are no active faults, and the drive is not in a RUN mode.

Press Enter to change the data from NO to either **YES** or **ON RUN**.

- If YES is selected, the drive will immediately start applying current to the motor and calculating the alignment value.
- 4) If **ON RUN** is selected, the drive expects the following sequence to occur:
 - a. Car Controller asserts DRIVE ENABLE
 - b. Car Controller issues RUN Command
 - c. Drive asserts CLOSE_CONTACT (all other outputs will stay false during the Alignment excluding READY TO RUN which will stay active)
 - d. Motor Contactor closes
 - e. Drive starts the Alignment procedure

During Alignment, a slight buzzing noise should come from the motor for approximately two seconds and the RUN light will be lit for the duration of the procedure.

- If the fault **AT CONTACT FLT** is displayed, verify the motor contactor is closed
- If the fault BRAKE IS OPEN is displayed, the drive has detected motion, verify the brake is set. If brake is set and minimal movement has occurred, increase BRK FLT LEVEL (A4).
- ENCODER ANG OFSTⁱ (A5) will automatically populate

When the Alignment is finished, the drive will simulate the removal of the run command even if Run Command is still being asserted.

5) View the value of ENCODER ANG OFST¹ (A5). If the value is 30000, the alignment procedure did not work and must be redone. When using an *incremental encoder*, ENCODER ANG OFST (A5) will auto fill with 00000. Otherwise, record value of ENCODER ANG OFSTⁱⁱ (A5).

ENCODER ANG OFST1 =	

- 6) Run motor at 10% contract speed and verify alignment is correct.
 - If ropes are not attached, set INERTIA (A1) to 0.25 seconds
 - If the SPD DEV FLT occurs, it may mean that the motor phasing is incorrect. The drive requires accurate U, V, and W phasing. An Open Loop Alignment will automatically check phasing.
- 7) Put ropes back onto the sheave, if necessary and run the motor on inspection speed and verify the direction requested is the same as the direction of the motor.
- 8) If the directions do not coincide with each other, change MOTOR ROTATION parameter in C1.
- 9) If motor current is high while using an incremental encoder, but running, the user may adjust FINE TUNE OFST (A4) to better align the motor to the drive. The drive will always check against the original value on the first run after one of the following conditions occur:
 - a. Power cycle
 - b. SPD DEV FLT
 - c. ENCODER FLT

Run the drive in inspection speed up and down the hoistway.

Manual Setup Method¹ – Absolute Encoder

The manual setup method can be used if the PM motor is already supplied with an offset value predetermined by the motor manufacturer, or when either the No Ropes Attached Method or Ropes Attached Method has already been applied to align the rotor and the drive or software is replaced.

WARNING

If the encoder was removed from the motor for any reason, the Manual Setup Method *CANNOT* be used

1) Determine ENCODER ANG OFST value in the A5 menu:

If replacing the FLASH, copy the ENCODER ANG OFST (A5) value before removing the memory and/or replacing the drive. If the original offset value was recorded when the alignment is first performed, use that value.

WARNING

ENCODER ANG OFST (A5) can also be uploaded using the Magnetek Explorer. ALIGNMENT (U10) must be enabled for the ENCODER ANG OFST (A5) value in the *.par file to be downloaded into the drive.

OR

- a. Find θ_{0_spec} [in degrees] from the manufacturer supplied data and use the following formula to convert it.
- Enable the Alignment in the U10 menu.
- 3) Enter value determined in Step 1) into ENCODER ANG OFST (A5).
- 4) Run the motor at inspection speed

WARNING

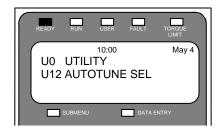
The motor may run away if the incorrect value for ENCODER ANG OFST (A5) is used. Be prepared to remove the run command.

5) Run the drive in inspection speed up and down the hoistway.

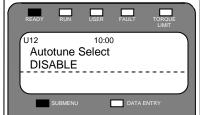
ENCODER ANG OFST=
$$\frac{2 \times \text{SERIAL_CPR}}{\text{POLES}} \times \frac{\theta_0 \text{_spec [°]}}{360^{\circ}}$$

only valid when ENCODER SELECT (C1) = ENDAT

only valid when ENCODER SELECT (C1) = ENDAT

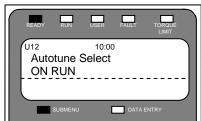

Auto-Tune Procedure

Auto-Tune is a function used only on **PM (U9)** that will automatically calculate the D and Q Axis Inductances and the Stator Resistance based on the calculated value of the motor's Base Impedance. Auto-Tune may be enabled two separate ways, one way is to enable the function through the operator and the other is to enable Auto-Tune by giving the drive a run command. In order for the function to properly work, all faults must be cleared, the brake must be set and the motor contactor must pull in.


Setting Auto-Tune

Note: Absolute Encoder Alignment Procedure should precede this Auto-Tune function. Alignment will affect the accuracy of the D and Q Axis Stator Inductances.

- In order to accurately measure the motor parameters, the brake must be set and the motor contactor must be closed.
 Depending on the method used for enabling Auto-Tune, drive signals may be used in conjunction with the contactor and the brake.
- Scroll to AUTOTUNE SEL (U11) to run the Auto-tune function. No Faults may be present on the drive when engaging Auto-Tune.



Press Enter to display:

Press Enter and use down arrow keys to select *ON RUN* or *YES* to enable Auto-Tune. Note: The contactor needs to be in for Auto-Tune to run. If necessary, manually hold the contactor in while the test is running.

Press Enter to change the data from DISABLE to either YES or ON RUN.

- If the selection YES is made, the drive will immediately start applying current to the motor and calculating the motor measurements.
- 5) If the selection *ON RUN* is made, the drive expects the following sequence to occur prior to the drive applying current to motor: Command run (inspection) on the car controller. The speed command must be set to zero (0) speed. The following sequence must be observed by the car controller to properly perform Auto-Tune via Car Controller
 - a. Car Controller asserts DRIVE ENABLE
 - b. Car Controller issues RUN Command
 - Drive asserts CLOSE_CONTACT (all other outputs will stay false during the Auto-Tune)
 - d. Motor Contactor closes
 - e. Drive starts the Auto-Tune procedure
 - f. When the Auto-Tune is finished, the drive will simulate the removal of the run command even if Run Command is still being asserted.

- g. Run Command is removed During Auto-Tune, a slight buzzing noise should come from the motor for approximately two seconds and the RUN LED will be lit for the duration of the procedure.
- If the fault CONTACTOR FLT is displayed, verify the motor contactor is closed
- If the fault BRAKE IS OPEN is displayed, the drive has detected motion, verify the brake is set. If brake is set and minimal movement has occurred, increase BRK FLT LEVEL (A4).
- The following parameters will populate:
 - a. D Axis Induct (A5)
 - b. Q Axis Induct (A5)
 - c. Stator Resist (A5)

Fine Tune Alignment Procedure

Test Measurements (EnDat)

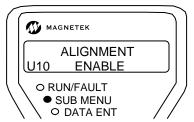
- 1. Set Id REF THRESHOLD (A4) to 0.00
- 2. Set FINE TUNE OFST (A4) to -30.00. If Encoder Fault or another fault occurs, set FINE TUNE OFST (A4) to -20.00.
- Run car up and down and note the peak current displayed in MOTOR CURR (D2) in table below
- 4. Set FINE TUNE OFST (A4) to +10.00 and note peak current in table below
- Reiterate Steps 4 and 5 increasing FINE TUNE OFST (A4) until peak current equals the value found when FINE TUNE OFST (A4) was set to in Step 3.

FINE TUNE OFST (A4) Value	MOTOR CURRENT (D2)

Calculate new ENCODER ANG OFSET

 With the two currents equal, use the following formula to determine the value in ENCODER ANG OFSET (A5)

$$\begin{pmatrix} ENCODER \\ ANG \\ OFSET (A5) \\ \textbf{new} \end{pmatrix} = \begin{pmatrix} ENCODER \\ ANG \\ OFSET (A5) \\ \textbf{old} \end{pmatrix} - \begin{pmatrix} \begin{pmatrix} FINE \, TUNE \\ OFST (A4) \\ positive \\ value \end{pmatrix} + \begin{pmatrix} FINE \, TUNE \\ OFST (A4) \\ negative \\ value \end{pmatrix} \times 8192$$


Example: ENCODER ANG OFSET (A5) old value = 185

FINE TUNE OFST positive value (A4) = 40 FINE TUNE OFST negative value (A4) = (-70) Number of poles = 16

$$(228) = (185) - \left(\frac{(40) + (-70)}{360 \times 16}\right) \times 8192$$

Enter new ENCODER ANG OFSET

 Enable Alignment by setting ALIGNMENT (U10) to ENABLE, then change the value in ENCODER ANG OFSET (A5) from the previous one, to the one calculated in the formula above

- 8. Set FINE TUNE OFST (A4) to 0.0
- 9. Set Id REF THRESHOLD (A4) back to the original value (0.10 is default value)

This completes the fine-tuning procedure for the EnDat Alignment. With balanced car, peak current and voltage should be the same in both directions.

Test Measurements (Incremental)

- 1. Set Id REF THRESHOLD (A4) to 0.00
- 2. Set FINE TUNE OFST (A4) to +10.00. If Encoder Fault or another fault occurs, set FINE TUNE OFST (A4) to -10.00.
- Run car in inspection in the direction of pulling load (i.e. empty car down) and note the peak current displayed in MOTOR CURR (D2) in table below
- 4. Make the absolute value of FINE TUNE OFST (A4) larger
- 5. Reiterate Steps 4 and 5 increasing FINE TUNE OFST (A4) until current is the lowest in the table.

FINE TUNE OFST (A4) Value	MOTOR CURRENT (D2)

Leave FINE TUNE OFST (A4) at value where the current draw was the lowest.

Open-loop Start-Up Procedure

The following is a recommended open-loop start-up procedure:

Motor Parameter Set-up

 Select one of the four default motors (listed in Table 23) for the MOTOR ID (A5) parameter (or select a valid motor ID, if available).

These typical V/Hz patterns are selectable via the MOTOR ID (A5) are given in the following table. It is best to start with one of the default V/Hz patterns.

			_	_
	4	4	6	6
parameter	pole	pole	pole	pole
	400 v	200 v	400 v	200 v
motor mid				
volts (A5)	28.0V	14.0V	28.0V	14.0V
motor mid				
freq (A5)	3.0Hz	3.0Hz	3.0Hz	3.0Hz
motor min				
volts (A5)	9.0V	4.0V	9.0V	4.0V
motor min				
freq (A5)	1.0Hz	1.0Hz	1.0Hz	1.0Hz

Table 23: V/Hz patterns via Motor ID

- 2) Enter / Verify the following from the motor's nameplate:
 - Motor HP or KW rating (RATED MTR POWER(A5))
 - Motor Voltage (RATED MTR VOLTS(A5))
 - Motor Excitation Frequency in Hz (RATED EXCIT FREQ(A5))
 - Rated Motor Current (RATED MOTOR CURR(A5))
 - Number of Motor Poles (MOTOR POLES(A5))

rated motor	# of motor
speed (rpm)	poles
1800-1500	4
1200-1000	6
900-750	8
720-600	10

Table 24: Motor Poles Reference

 Rated Motor Speed at full load in RPM (RATED MTR SPEED (A5))
 Note: The rated motor rpm must be full load speed. If synchronous speed is given, the motor rated rpm can be estimated by:

- 97.5% of synchronous speed for Nema type B motor design
- 94% of synchronous speed for Nema type D motor design

#	rated m	rated motor			
of	speed (rpm)			
motor	at	at			
poles	60 Hz 50 Hz				
4	1800	1500			
6	1200	1000			
8	900	750			
10	700	600			

Table 25: Synchronous Motor Speeds
Reference

 Use the default value of 2.5% for Stator Resistance (STATOR RESIST(A5))

NOTE: if there are operation issues, the

NOTE: if there are operation issues, the stator resistance can be measured, refer the procedure detailed on page 157.

Hoistway Parameter Set-up

- 4) Enter / Verify the hoistway parameters:
 - CONTRACT CAR SPD (A1)
 parameter programs the elevator
 contract speed in ft/min or m/s.
 - CONTRACT MTR SPD (A1)
 parameter programs the motor speed
 at elevator contract speed in RPM.

NOTE: The above two parameters create the interaction that allow engineering units to be used throughout the HPV 600 software.

Verify Parameters at Default

5) Verify that the following A1 and A4 parameters are set at default:

parameter name	default
DC START LEVEL (A1)	80.0
DC STOP LEVEL (A1)	50.0
DC STOP FREQ (A1)	0.5
DC START TIME (A1)	1.00
DC STOP TIME (A1)	1.00
SLIP COMP TIME (A1)	1.50
SLIP COMP GAIN (A1)	1.00
TORQ BOOST TIME (A1)	0.05
TORQ BOOST GAIN (A1)	0.00
MTR TORQUE LIMIT (A1)	200.0
REGEN TORQ LIMIT (A1)	200.0
ILIMT INTEG GAIN (A4)	1.00
HUNT PREV GAIN (A4)	1.00
HUNT PREV TIME (A4)	0.20

Low speed inspection mode

- 6) Run the drive in low speed inspection mode and...
 - Verify proper hoistway direction...can be reversed with the MOTOR ROTATION (C1) parameter.
 - Verify that the Safety Chain / Emergency Stop works

Adjust Motor RPM (Slip)

- At Empty Car, run the drive at 10% of contract speed and complete the Motor RPM Adjustment Procedure detailed on page 151.
- 8) At Full-load, run the drive at 10% of contract speed and complete the Motor RPM Adjustment Procedure detailed on page 151.

High-speed mode

 Run the drive in high-speed mode (Balanced, Full-load and Empty Car) and observe operation...if operational issues please refer to the Performance Adjustments section.

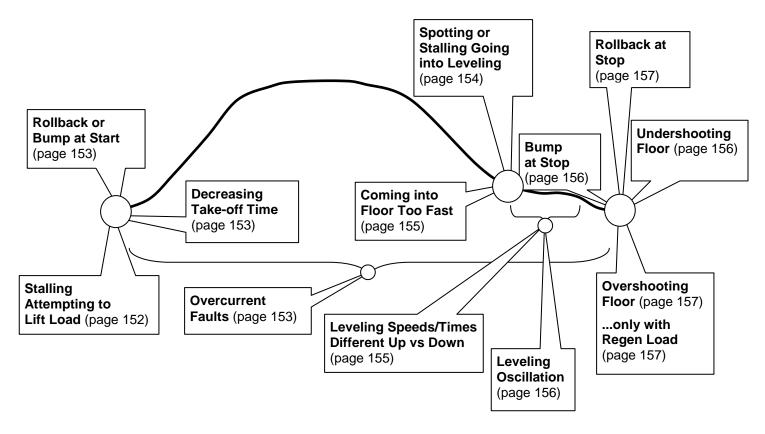
This completes the recommended open-loop start-up procedure.

Motor RPM Adjustment Procedure

- Run the car in the UP direction
 - measure and record the car speed using a hand tach on the sheave (wait for speed to stabilize)

OR

- time one complete rotation of the sheave and record the time (in seconds) it takes for exactly one sheave rotation
- Run the car in the DOWN direction
 - measure and record the car speed using a hand tach on the sheave (wait for speed to stabilize)


OR

- time one complete rotation of the sheave and record the time (in seconds) it takes for exactly one sheave rotation
- If the speeds/times are different UP vs. DOWN...increment or decrement the RATED MTR SPEED (A5) parameter and run UP and DOWN again
- Continue until the speeds/times UP vs. DOWN are the same.

Note: If an OVERCURR FLT occurs, refer to "Overcurrent Faults" in the Performance Adjustments section (page 153)

Note: If stalling occurs when attempting to lift the load, refer to "Stalling Attempting to Lift Load" in the Performance Adjustments section (page 152). Additionally, sometimes the adjustments made to help with stalling attempting to lift load can be set to default once the RATED MTR SPEED (A5) parameter is adjusted properly.

Open-Loop Performance Adjustments

Stalling Attempting to Lift Load

If the motor stalls as it attempts to lift the load, then until resolved, try the following (in order):

- Increase the Torque Boost Gain parameter
- 2. Adjust the Motor Stator Resistance parameter
- 3. Adjust the Motor Mid Voltage parameter

Note: if no performance change is observed after any one step, set any changed value(s) back to the original value(s) before proceeding onto the next step.

Increase the Torque Boost Gain Parameter

- The Torque Boost function is defaulted off (TORQ BOOST GAIN (A1)= 0).
- Increase the TORQ BOOST GAIN (A1) in 0.1 intervals and observe performance.

Adjust the Motor's Stator Resistance

 Measure the stator resistance by completing the procedure detailed on page 157. If still stalling after measuring stator resistance, additionally increase STATOR RESIST (A5) parameter by increments of 0.1 and observe performance

Adjust the Motor Mid Voltage Parameter

- Complete the Mid-volts Adjustment Procedure detailed on page 158.
- If still stalling after completing midvolts adjustment procedure, additionally increase MOTOR MID VOLTS (A5) parameter by increments of 0.5 and observe performance

Note: Avoid increasing the MOTOR MID VOLTS (A5) parameter too high, since this effects stopping performance (i.e. coming into the floor too fast) or can create Overcurrent Faults

Rollback or Bump at Start

If rollback is observed or a bump is felt at the start, then until resolved, try the following (in order):

- 1. Verify Mechanical Brake Timing
- 2. Increase DC Injection Start Level Note: if no performance change is observed after any one step, set any changed value(s) back to the original value(s) before proceeding onto the next step.

Verify Mechanical Brake Timing

 The mechanical brake should be picked during the DC injection start time (DC START TIME (A1) parameter), see "Mechanical Brake Timing at Start" on page 158.

Increase DC Injection Start Level

 Increase the DC START LEVEL (A1) parameter by increments of 5% and observe performance.

Decreasing Take-off Time

The following can help to decrease take-off time, try the following (in order):

- 1. Increase DC Injection Start Level
- 2. Increase the Accel S-curve parameters
- 3. Increase the Torque Boost Gain parameter

Note: if no performance change is observed after any one step, set any changed value(s) back to the original value(s) before proceeding onto the next step.

Increase DC Injection Start Level

 Increase the DC START LEVEL (A1) parameter by increments of 5% and observe performance.

Increase the Accel S-curve parameters

- Increase take-off jerk rate via ACCEL JERK IN x (A2) parameter
- Increase acceleration rate via ACCEL x (A2) parameter

Note: When increasing both jerk and accel rates, watch for Overcurrent Faults or decreased ride quality. If these occur, set the rates back to the original values.

Increase the Torque Boost Gain Parameter

- The Torque Boost function is defaulted off (TORQ BOOST GAIN (A1)= 0).
- Increase the TORQ BOOST GAIN
 (A1) in 0.1 intervals and observe takeoff time and performance.

Note: When increasing the torque boost, watch for Overcurrent Faults or decreased ride quality. If these occur, set the gain back.

Overcurrent Fault

If an "OVERCURR FLT" occurs it can indicate the s-curve settings are too high (jerk, accel, decel rates) or too much motor voltage is generated. Until resolved, try the following (in order):

- 1. Verify Mechanical Brake Timing
- 2. Verify Torque Limits
- 3. Decrease the S-curve parameters
- 4. Verify Motor Min/Mid Voltage parameters
- Increase DC Injection Start Level
- 6. Measure the Motor's Stator Resistance
- 7. Decrease the Torque Boost Note: if no change is observed after any one step, set any changed value(s) back to the original value(s) before proceeding onto the next step.

Verify Mechanical Brake Timing

- The mechanical brake should be lifted before the drive is given a non-zero speed command
- The mechanical brake should be picked during the DC injection start time (DC START TIME (A1) parameter), see "Mechanical Brake Timing at Start" on page 158.

Verify Torque Limits

- The Torque Limits are defaulted at 200% (MTR TORQUE LIMIT(A1) and REGEN TORQ LIMIT(A1)= 200%).
- Decrease MTR TORQUE LIMIT (A1) and REGEN TORQ LIMIT (A1) parameters until default (200%). Note: may need to set torque limits below 200% if motor's current rating is larger than the drive's current rating

Decrease the S-curve Parameters

- Decrease ierk rates via
 - ACCEL JERK IN x (A2),
 - ACCEL JERK OUT x (A2)
 - DECEL JERK IN x (A2)
 - DECEL JERK OUT x (A2)
- Decrease accel/decel rates via
 - ACCEL x (A2),
 - DECEL x (A2)

Verify Motor Min/Mid Voltage Parameters

- MOTOR MID VOLTS (A5) and MOTOR MIN VOLTS (A5) parameters should usually be set at default, see Table 23on page 150.
- These parameters would only be adjusted slightly with certain issues (see Stalling Attempting to Lift Load (page 152); Spotting or Stalling Going

into Leveling (page 154); or Overshooting Floor only with Regen Load (page 157)).

Increase DC Injection Start Level

 Increase the DC START LEVEL (A1) parameter by increments of 5% and observe performance.

Measuring the Stator Resistance

• Complete the procedure detailed on page 157.

Decrease the Torque Boost

- Decrease TORQ BOOST GAIN (A1)
 parameter in increments of 0.1 until
 the fault goes away or zero is reached
 (and the function is turned off)
- Secondly, decrease STATOR RESIST (A5) parameter in increments of 0.1% Note: set TORQ BOOST GAIN (A1)=0, before adjusting STATOR RESIST (A5))

Spotting or Stalling Going into Leveling

If the motor stalls or spots as it transitions from deceleration to leveling speed then until resolved, try the following (in order):

- Decrease Decel Jerk Out and Decel Rates
- Increase the Torque Boost Gain parameter
- 3. Measure the Stator Resistance
- 4. Adjust the Motor Mid Volts parameter Note: if no performance change is observed after any one step, set any changed value(s) back to the original value(s) before proceeding onto the next step.

Decrease Decel Jerk Out and Decel Rates

- Decrease jerk rate via DECEL JERK OUT x (A2) parameter and observe performance
- Secondly, decrease decel rate via DECEL RATE x (A2) parameter and observe performance

Note: the combination of these two parameters is usually primary cause of spotting or stalling going into leveling

Increase the Torque Boost Gain Parameter

- The Torque Boost function is defaulted off (TORQ BOOST GAIN (A1)= 0).
- Increase the TORQ BOOST GAIN (A1) in 0.1 intervals and observe performance.

Measure the Stator Resistance

 Measure the stator resistance by completing the procedure detailed on page 157 and observe performance.

Adjust the Motor Mid Volts parameter

 Complete the Mid-volts Adjustment Procedure detailed on page 158 and observe performance.

Note: Avoid increasing the MOTOR MID VOLTS (A5) parameter too high, since this effects stopping performance (i.e. coming into the floor too fast) or can create Overcurrent Faults

Coming into Floor Too Fast

If the car is coming into the floor too fast then until resolved, try the following (in order):

- Decrease Decel Jerk Out and Decel Rates
- 2. Decrease Motor Mid Voltage parameter

Note: if no performance change is observed after any one step, set any changed value(s) back to the original value(s) before proceeding onto the next step.

<u>Decrease Decel Jerk Out and Decel Rates</u>

- Decrease jerk rate via DECEL JERK OUT x (A2) parameter and observe performance
- Secondly, decrease decel rate via DECEL RATE x (A2) parameter and observe performance

Decrease the Motor Mid Voltage Parameter

- MOTOR MID VOLTS (A5) and MOTOR MIN VOLTS (A5) parameters should usually be set at default, see Table 23on page 150.
- These parameters would only be adjusted slightly with certain issues (see Stalling Attempting to Lift Load (page 152); Spotting or Stalling Going into Leveling (page 154); or Overshooting Floor only with Regen Load (page 157)).
- Decrease MOTOR MID VOLTS (A5) parameter (decrease increments of 0.5 and observe performance)

Note: When decreasing the Motor Mid Volts parameter, watch that the drive does not start stalling (especially with full-load)

Leveling Times Different Up vs. Down

If the elevator exhibits significantly different leveling speeds/times up vs. down then until resolved, try the following (in order):

- Verify the Slip Compensation parameters
- 2. Complete Motor RPM Adjustment Procedure

Verify Slip Compensation parameters

- Verify SLIP COMP TIME (A1) parameter is at default of 1.50.
- Verify SLIP COMP GAIN (A1) parameter is at default of 1.00.

Complete Motor RPM Adjustment Procedure

- At Empty Car, run the drive at 10% of contract speed and complete the Motor RPM Adjustment Procedure detailed on page 151.
- At Full-load, run the drive at 10% of contract speed and complete the Motor RPM Adjustment Procedure detailed on page 151.

Leveling Oscillation

If the elevator exhibits a leveling speed oscillation then until resolved, try the following (in order):

- Increase the Hunt Prevention Time Parameter
- 2. Decrease Distortion Loop Gain parameters

Note: if no performance change is observed after any one step, set any changed value(s) back to the original value(s) before proceeding onto the next step.

Increase the Hunt Prevention Time Parameter

- The Hunt Prevention Time Constant is defaulted as 0.2 seconds (HUNT PREV TIME (A4)= 0.2).
- Increase the HUNT PREV TIME (A4) parameter in 0.1 intervals and observe performance.
- Note: if no performance change is observed, set the values back to default

Decrease the Distortion Loop Gain Parameters

- The Distortion Loop Gain parameters are defaulted at Id DIST LOOP GN (A4) = 0.50 and Iq DIST LOOP GN (A4) = 0.30
 Note: to view these parameter enable
 - Note: to view these parameter enabled hidden items (HIDDEN ITEMS (U2) = enabled)
- Decrease Id DIST LOOP GN (A4) and Iq DIST LOOP GN (A4) parameters in 0.1 intervals and observe performance.
- Note: if no performance change is observed, set the values back to default

Bump at Stop

If a bump is felt at the stop, then until resolved, try the following (in order):

- 1. Verify Mechanical Brake Timing
- 2. Decrease Decel Jerk Out Rate
- 3. Decrease DC Injection Stop Frequency

Note: if no performance change is observed after any one step, set any changed value(s) back to the original value(s) before proceeding onto the next step.

Verify Mechanical Brake Timing

The mechanical brake should be dropped during the DC injection stop time (DC STOP TIME (A1) parameter), see "Mechanical Brake Timing at Stop" on page 158.

Decrease Decel Jerk Out Rate

 Decrease jerk rate via DECEL JERK OUT x (A2) parameter and observe performance.

Decrease DC Injection Stop Frequency

 Decrease the DC STOP FREQ (A1) parameter in increments of 0.1 Hz and observe performance.

Undershooting Floor

If the car is undershooting the floor then until resolved, try the following (in order):

- 1. Verify Mechanical Brake Timing
- 2. Increase Leveling Speed
- 3. Decrease Decel Jerk Out and Decel Rates

Note: if no performance change is observed after any one step, set any changed value(s) back to the original value(s) before proceeding onto the next step.

Verify Mechanical Brake Timing

The mechanical brake should be dropped during the DC injection stop time (DC STOP TIME (A1) parameter), see "Mechanical Brake Timing at Stop" on page 158.

Increase Leveling Speed

 Increase leveling speed and observe performance

Increase Decel Jerk Out and Decel Rates

- Decrease jerk rate via DECEL JERK OUT x (A2) parameter and observe performance
- Secondly, decrease decel rate via DECEL RATE x (A2) parameter and observe performance

Overshooting Floor

If the car is overshooting the floor then until resolved, try the following (in order):

- Verify Mechanical Brake Timing
- o Decrease Leveling Speed
- Increase Decel Jerk Out and Decel Rates
- Decrease Motor Mid Voltage parameter

Note: if no performance change is observed after any one step, set any changed value(s) back to the original value(s) before proceeding onto the next step.

Verify Mechanical Brake Timing

The mechanical brake should be dropped during the DC injection stop time (DC STOP TIME (A1) parameter), see "Mechanical Brake Timing at Stop" on page 158.

Decrease Leveling Speed

- Decrease leveling speed and observe performance
- Note: practical minimum for leveling speed is about 2.5 Hz.

Increase Decel Jerk Out and Decel Rates

- Increase jerk rate via DECEL JERK OUT x (A2) parameter and observe performance
- Secondly, increase decel rate via DECEL RATE x (A2) parameter and observe performance
- Note: When increasing the Decel and Jerk Rates watch for spotting or stalling.

Decrease the Motor Mid Voltage Parameter

- Decrease MOTOR MID VOLTS (A5) parameter (decrease increments of 0.5 and observe performance)
- Note: When decreasing the Motor Mid Volts parameter, watch that the drive does not start stalling (especially with full-load)

Overshooting Floor only with Regen Load

If the car overshoots the floor only with a regen load (i.e. empty-up) then:

- Verify the car DOES NOT overshoot with balanced car and empty-down...if it does refer to Overshooting Floor section on page 157.
- If only overshoots empty-up, increase MOTOR MIN VOLTS (A5) in increments of 0.1 V and observe performance.

Note: if no performance change is observed, set the Motor Min Volts parameter to the original value.

Rollback at Stop

If rollback is observed at the stop, then until resolved, try the following (in order):

- 1. Verify Mechanical Brake Timing
- 2. Decrease Decel Jerk Out Rate
- 3. Increase DC Injection Stop Level Note: if no performance change is observed after any one step, set any changed value(s) back to the original value(s) before proceeding onto the next step.

Verify Mechanical Brake Timing

The mechanical brake should be dropped during the DC injection stop time (DC STOP TIME (A1) parameter), see "Mechanical Brake Timing at Stop" on page 158.

Decrease Decel Jerk Out Rate

 Decrease jerk rate via DECEL JERK OUT x (A2) parameter and observe performance.

Increase DC Injection Stop Level

 Increase the DC STOP LEVEL (A1) parameter in increments of 5% and observe performance.

<u>Measuring Stator Resistance Procedure</u> The stator resistance value can be measured by:

- Remove any two motor wires directly at the terminals of the motor. Since the stator resistance is low, the resistance needs to be measured at the motor terminals in order to avoid the resistance of the motor wires
- Connect the two meter leads together and measure the resistance of the meter leads in ohms (meter resistance). Since the stator resistance is low, the resistance of the meter leads need to be taken into account.

- Measure the resistance between the two motor terminals in ohms (stator resistance)
- With the motor nameplate values entered in the A5 menu, use the BASE IMPEDANCE (D2) value (in ohms) to calculate the STATOR RESIST (A5) parameter (as a percentage of base impedance):

$= \frac{stator\ resistance - meter\ resistance}{2 \times BASE\ IMPEDANCE (D2)} \times 100$

Mid-volts Adjustment Procedure

- Run the drive (Balanced) at 10% of contract speed
- Verify the running currents are approximately equal in both directions. The middle voltage level (via MOTOR MID VOLTS (A5) parameter) should be adjusted in 1 or 2 volt increments and the current monitored in both the up and down directions until the running currents are approximately equal.
- Note: If the middle voltage is set too high, the drive will begin to trip on over current faults during normal operation or effect stopping performance (i.e. coming into the floor too fast)
- Note: If after raising the midpoint voltage spotting again begins to occur, set mid voltage back to previous value

Mechanical Brake Timing at Start

The mechanical brake should be picked during the DC injection start time (DC START TIME (A1) parameter).

- But allow 0.5 seconds for the motor to build up flux before lifting the mechanical brake.
- Also, do not have the DC injection last more than 0.5 seconds after the mechanical brake is lifted.
- If drive controls the mechanical brake, the DC inject start time should be at least 0.5 seconds greater than the brake pick delay (BRAKE PICK DELAY (A1)).
- AUTO STOP EN (C1) parameter
 - Enabled The drive will start DC injection phase when it receives a

- run command and a non-zero speed command.
- Disabled The drive will start DC injection phase when it receives a run command.

Mechanical Brake Timing at Stop

The mechanical brake should be dropped during the DC injection stop time (DC STOP TIME (A1) parameter).

- But allow additional stopping dc injection time after the mechanical brake is dropped for it to close.
- If drive controls the mechanical brake via BRAKE PICK logic output, the DC inject stop time should be greater than the brake pick delay (BRAKE PICK DELAY (A1)) by the time it takes for the mechanical brake to close.
- AUTO STOP ENA (C1)=DISABLED STOPPING MODE SEL (C1) =
 - RAMP
 - Run command removed the drive will ramp to DC injection phase.
 - Commanding zero speed the drive will try to hold zero speed (not DC injection).
 - IMMEDIATE
 - Run command removed the drive will immediate turn off its outputs (coast to stop).
 - Commanding zero speed the drive will ramp to DC injection phase.
- AUTO STOP ENA (C1) = ENABLED STOPPING MODE SEL (C1) =
 - RAMP
 - Run command removed the drive will ramp to DC injection phase.
 - Commanding zero speed the drive will ramp to DC injection phase.
 - IMMEDIATE
 - Run command removed the drive will immediately turn off its outputs (coast to stop).
 - Commanding zero speed the drive will immediately turn off its outputs (coast to stop).

Testpoints (Control Board)

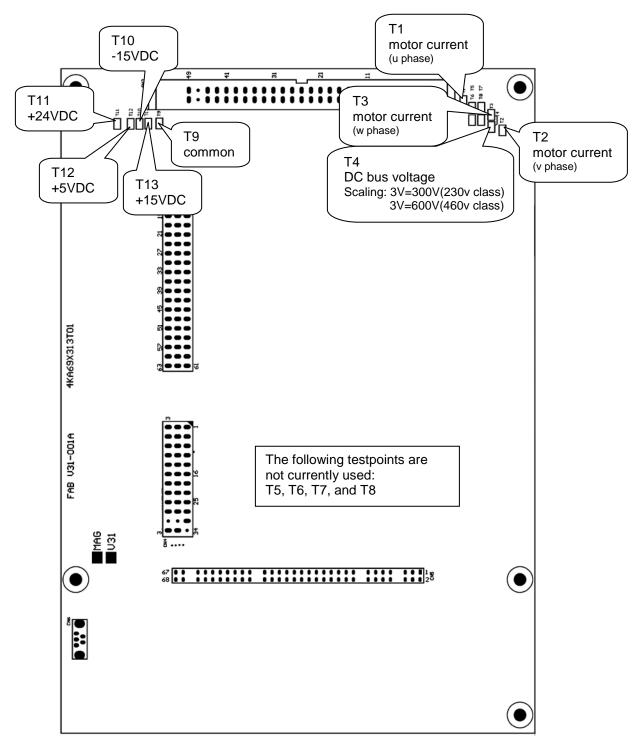


Figure 44: Main Board Testpoints

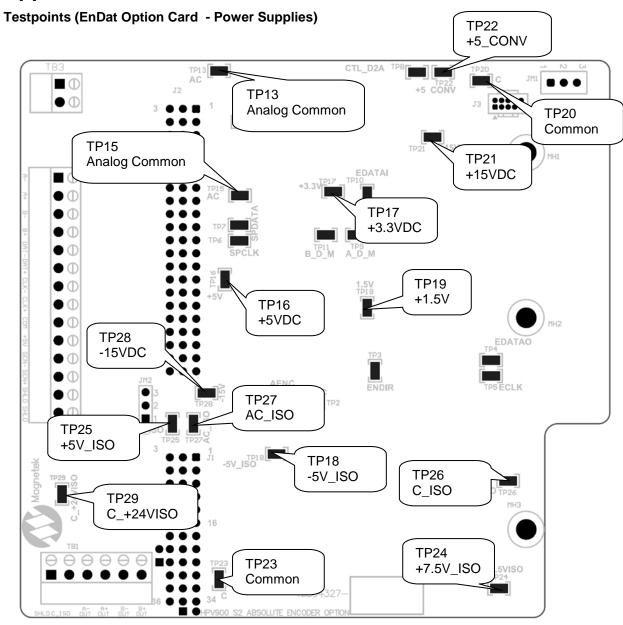


Figure 45: EnDat Option Card Power Supply Testpoints

Testpoints (EnDat Option Card - Other)

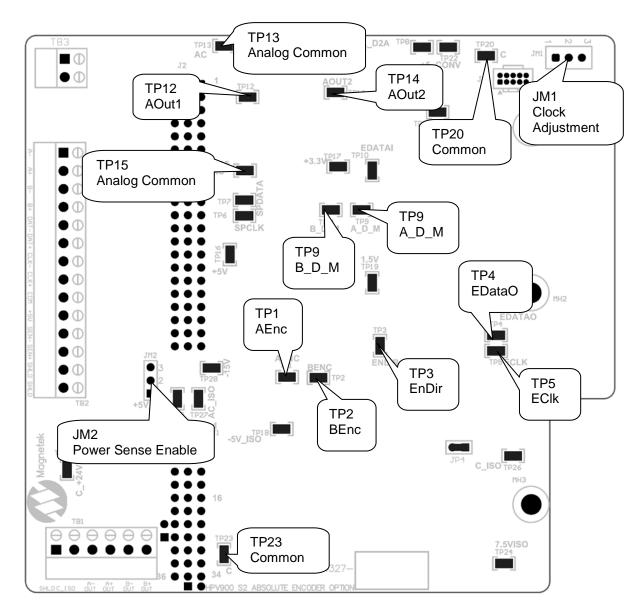


Figure 46: EnDat Option Card Other Testpoints

For long encoder cables (15m/50ft), it is recommended to connect the –SENSE and +SENSE lines into the terminal block. The drive will automatically produce proper voltage on the encoder if JM2 is set to position 2-3. If JM2 is set to position 1-2, the remote power sense is disabled and the sense wires do not need to be connected.

In addition to remote power sense for long cable lengths, JM1, the serial clock, should be set to position 2-3. For shorter cable lengths, JM1 should stay in position 1-2.

Elevator Duty Cycle

The HPV 900 Series 2 Ratings Table has the following two continuous current ratings:

 Continuous Output Current General Purpose Rating

 Continuous Output Current Elevator Duty Cycle Rating The General Purpose rating defines the maximum amount of current the drive can produce if the drive was to run non-stop.

The Elevator Duty Cycle Rating defines the maximum amount of current the drive can produce following the worst case Elevator System Load Profile.

Rated Full-Load Current Rated Current From the Elevator System Load Profile

								_	
Rated Input Voltage	NA* Rated HP	EU* Rated HP	NA* Rated kW	EU* Rated kW	Continuous Output Current General Purpose Rating	Continuous Output Current Elevator Duty Cycle** Rating	Maximum Output Current for 5 Sec	Frame Size***	Model Number****
	7.5		5.5		25	27	62.5	2	HPV900-2025-2E1-01
2	10		7.5		31	33	77.5	2	HPV900-2031-2E1-01
3	15		11		41	44	102.5	4	HPV900-2041-2E1-01
0	20	-	15		52	56	130	4	HPV900-2052-2E1-01
V	25	-	19	-	75	80	187.5	4	HPV900-2075-2E1-01
	30		22		88	94	220	4	HPV900-2088-2E1-01
	40		30		98	105	245	5	HPV900-2098-2E1-01
	5	5	3.7	3.7	8	9	20	1	HPV900-4008-2E1-01
	7.5	5.5	5.5	4	12	13	30	2	HPV900-4012-2E1-01
	10	7.5	7.5	5.5	16	17	40	2	HPV900-4016-2E1-01
	15	10	11	7.5	21	23	52.5	3	HPV900-4021-2E1-01
4 6	20	15	15	11	27	29	67.5	3	HPV900-4027-2E1-01
0	25	20	19	15	34	36	85	4	HPV900-4034-2E1-01
V	30	25	22	18.5	41	44	102.5	4	HPV900-4041-2E1-01
v [40	30	30	22	52	56	130	4	HPV900-4052-2E1-01
	50	40	37	30	65	70	162.5	5	HPV900-4065-2E1-01
	60	50	45	37	72	77	180	5	HPV900-4072-2E1-01
	75	60	56	45	96	103	240	5	HPV900-4096-2E1-01

Range for continuous current operation

NOTE: all ratings at 60/50Hz and 10 kHz carrier frequency all ratings for based on a geared elevator application,

For more information on altitude, temperature, and carrier frequency derating, see Drive Derating on page 14.

^{*} NA refers to drives sold in North America and ratings are based off of 460VAC input. EU refers to drives sold in Europe and are based off of 460VAC input

For more information on the Elevator Duty Cycle Rating, see page 162

^{***} Cube size dimensions, mounting holes, and weights are shown in Dimensions, Mounting Holes and Weights on page 166

^{****} From more information on model numbers, see page 14.

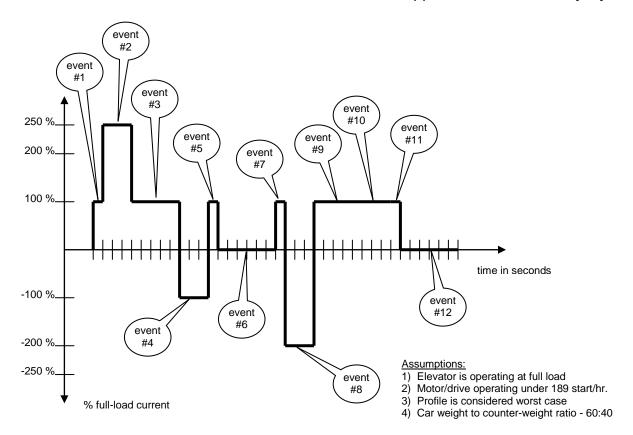


Figure 47: Elevator System Load Profile

Event	Description	Time	Current Current			
		(s)	(per unit)	(% full load)	(l²t)	
1	Pre torque	1	1	100%	1.0	
2	Accel up	3	2.5	250%	18.75	
3	Cruise	5	1	100%	5.0	
4	Decel up	3	1	100%	3.0	
5	Post torque	1	1	100%	1.0	
6	Rest	6	0	0%	0.0	
7	Pre torque	1	1	100%	1.0	
8	Accel down	3	2	200%	12	
9	Cruise	5	1	100%	5.0	
10	Decel down	3	1	100%	3.0	
11	Post torque	1	1	100%	1.0	
12	Rest	6	0	0%	0.0	
	Total	38			50.75	
RMS Per Unit Current for Load Profile						
Percentage of Full-Load Current for Load Profile						
Cycles per hour						
			St	arts per hour	189	

Table 26: Elevator System Load Profile

CE Guidelines

Below are guidelines for CE compliance.

Standards

EN 12015 Electromagnetic compatibility

Emission

EN 12016 Electromagnetic compatibility

Immunity

Recommended Line Filter

A line filter must be connected between the main power supply and input three phase input terminals to comply with the standards listed above. Line Filter Selection on page 178 lists the recommended line filters to be used with HPV 900 Series 2 drives.

Installation Guidelines for EMI/RFI Issues

The HPV 900 Series 2 drive should be installed in a control panel or metal enclosure. Enclosure manufacturers' designs vary and it is not the intent of this document to cover all designs. Some designs require different countermeasures than other designs. This paper covers only the general points of enclosure design when the HPV 900 Series 2 drive is used.

Countermeasures For the Enclosure

Radio frequency interference of various wavelengths emitted by electrical components are scattered randomly inside a control panel. This RFI induces noise on the cables within the control panel. When these cables are led out of the control panel, the cables containing the RFI noise act as antenna and radiate noise externally.

If drives or other control equipment are connected to a power supply without using a line filter, high frequency noise generated in the equipment can flow into the power supply.

Problems related to these emissions include:

- Radiated noise from the electric components inside the control panel or from the connecting cables.
- Radiated noise from the cables leading out of the control panel.

 Conducted noise and radiated noise (due to conducted noise) flowing from the control panel into the main input cables.

The basic countermeasures against the above conditions include modification of the control panel structure. Using EMI gaskets, ferrite cores, shielded cable, and enhanced grounding is also beneficial. The separation of signal and power wires is essential.

To help comply it is necessary to prevent the leakage or penetration of radio waves through cable entrances and installation holes in the enclosure.

Modifications to the enclosure include the following:

- The enclosure should be made of ferrous metal and the joints at the top, bottom, and side panels should be continuously welded to make them electrically conductive.
- The paint on the joint sections should be removed back to the bare metal to provide good electrical conductance.
- 3. Be careful to avoid gaps, which could be created when panels become warped due to over tightening of retaining screws.
- 4. The section where the cabinet and door fit should have a ridged structure to avoid any gaps where RFI may leak.
- 5. There should be no conducting sections, which are left floating electrically.
- 6. Both the cabinet and drive unit should be connected to a common ground.

Enclosure Door Construction

To help comply it is necessary to reduce RFI by eliminating gaps around doors used for opening/closing the control panel.

- 1. The door should be made of ferrous metal.
- Conductive packing should be used between the doors and the main unit.
 Assure conductivity by removing the paint on the sections, which contact the door.
- 3. Be careful to avoid gaps which could be opened when panels are warped due to the tightening retaining screws, etc.

Wiring External to the Enclosure

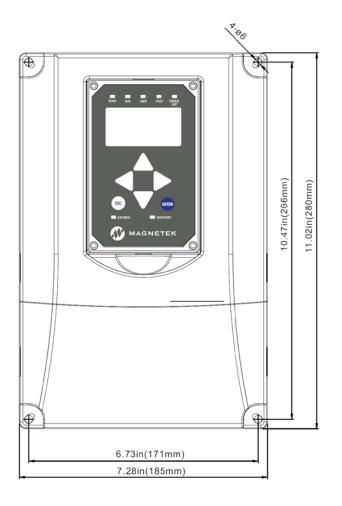
To help comply, the treatment of cables is the most important countermeasure. The grounding and the treatment of gaps in the external connection sections between the control panel and the machine are also important. It is recommended that the OEM / installer examine the present structure of all cable entrances.

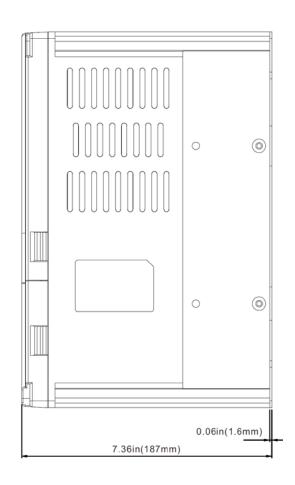
Screened/shielded cable must be used for the motor cable (20 meters, 65 feet. max). The screen of the motor cable must be grounded at both ends by a short connection using as large an area as practical. The output lead section of the control panel should be treated to minimize leakage of RFI by eliminating clearances. The grounding surfaces should be metal conductors (steel solid or flexible conduit) and conductance should be assured by the following:

- Ground the connectors at both ends.
- The motor should be grounded.
- Flexible conduit (metallic) connected to a junction box should be grounded.

Group the wiring external to the enclosure into six separate steel conduits:

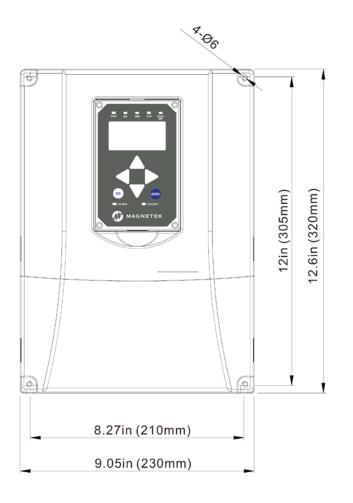
- 1. AC main input power,
- 2. AC control input power,
- 3. output to the motor,
- 4. motor encoder/thermistor wiring,
- 5. low voltage control including analog and digital inputs and outputs,
- 6. dynamic braking resistor.

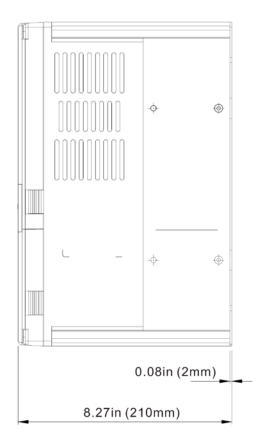

Wiring Internal to the Enclosure


The most effective treatment for cables is shielding. Screened / shielded cable is recommended within the control panel. Use cables with a woven screen. The screen of the cable should be securely grounded using the largest area and shortest distance practical. Shield terminations must be as short as possible. It is recommended to ground the screen of the cable by clamping the cable to the grounding plate.

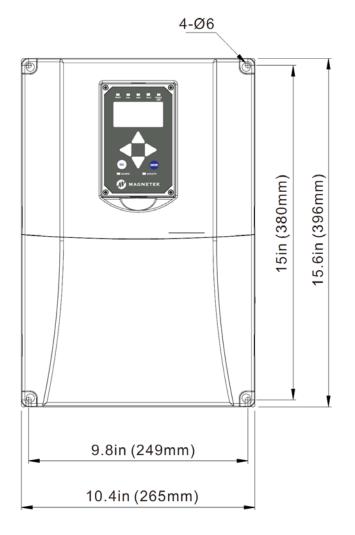
Panel Layout

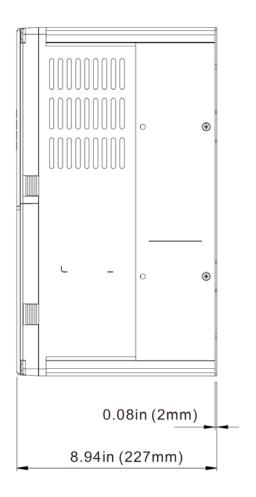
The line filter and the drive must be mounted on the same metal panel. The metal panel should be securely grounded. The filter should be mounted as close as possible to the drive. Power cables should be kept as short as possible.


Dimensions, Mounting Holes, & Weights

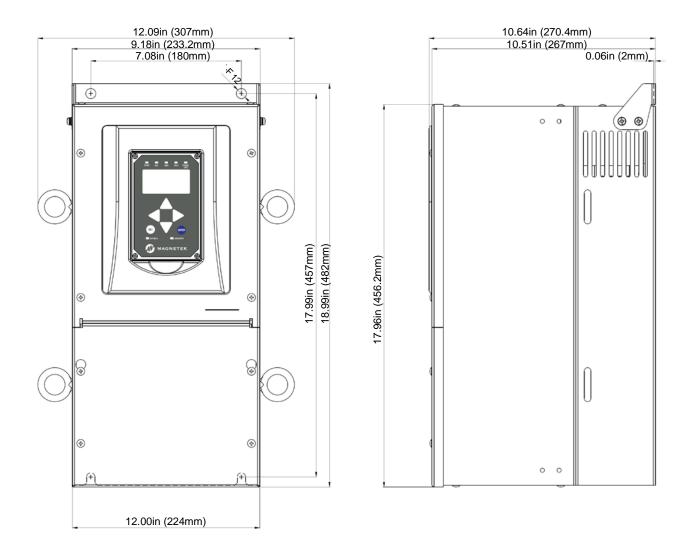


Notes: Weight =14.7lbs (6.7kg)


Figure 48: Frame 1 Dimensions and Mounting Holes



Notes:Weight=23.1lbs(10.5kg)


Figure 49: Frame 2 Dimensions and Mounting Holes

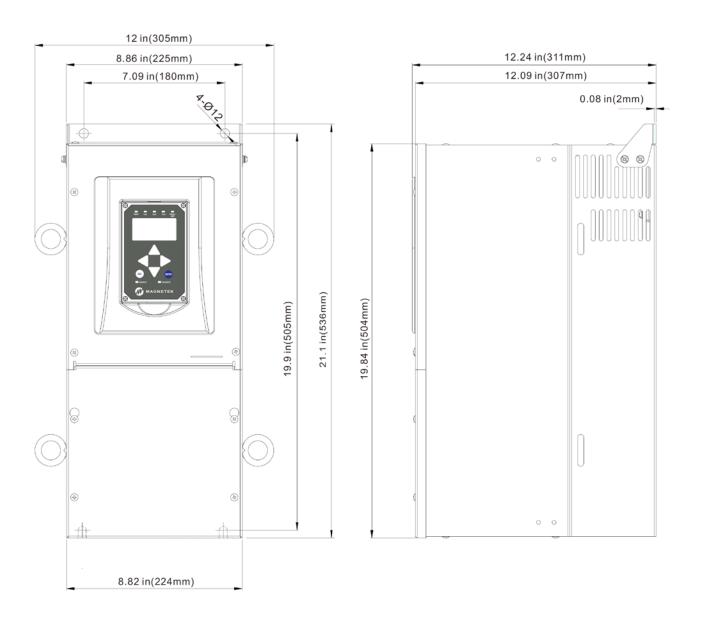

Notes:Weight=36.1lbs(16.4kg)

Figure 50: Frame 3 Dimensions and Mounting Holes

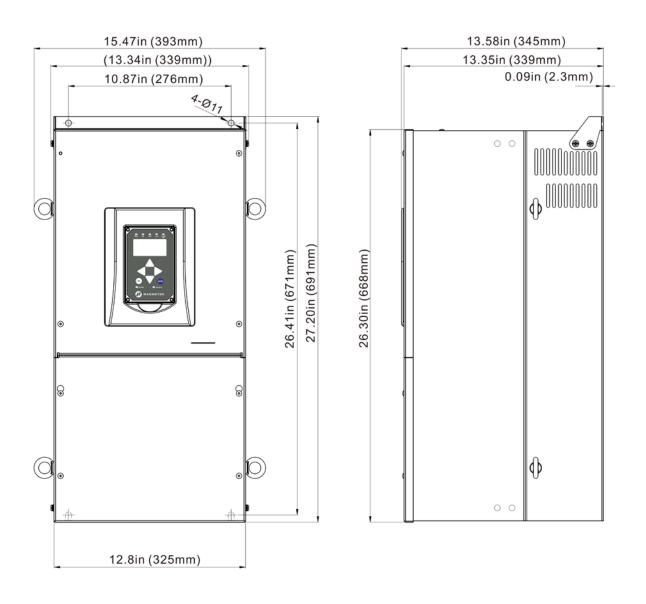

Notes: Weight = 70.6lbs (32kg)

Figure 51: Frame 3.5 Dimensions and Mounting Holes

Notes:Weight=71.7lbs(32.5kg)

Figure 52: Frame 4 Dimensions and Mounting Holes

Notes: Weight =121lbs (55kg)

Figure 53: Frame 5 Dimensions and Mounting Holes

Dynamic Braking Resistor Selection – Worm Gear

Model	Power Dissipation kW (Worm Gear)	Resistor Value Range (Worm Gear)	Magnetek Part Number	Dimensions	Power Dissipation (kW)	Resistor Value (ohms)
HPV900-4008-2E1-01	0.8	162Ω - 53Ω	HPV-00856-DB	12Lx7Dx5H	0.89	56
HPV900-4012-2E1-01	1.2	109Ω - 32Ω	HPV-01735-DB	12Lx13Dx5H	1.65	35
HPV900-4016-2E1-01	1.6	80Ω - 32Ω	HPV-01735-DB	12Lx13Dx5H	1.65	35
HPV900-4021-2E1-01	2.4	53Ω - 16Ω	HPV-02523-DB	19Lx10Dx5H	2.5	23.3
HPV900-4027-2E1-01	3.2	40Ω - 16Ω	HPV-03521-DB	19Lx13Dx5H	3.52	21.3
HPV900-4034-2E1-01	4.0	33Ω - 8Ω	HPV-05308-DB	26.5Lx12Dx5H	5.26	8
HPV900-4041-2E1-01	4.8	27Ω - 8Ω	HPV-05308-DB	26.5Lx12Dx5H	5.26	8
HPV900-4052-2E1-01	6.4	20Ω - 8Ω	HPV-08709-DB	28Lx10Dx10H	8.72	8.6
HPV900-4065-2E1-01	8.0	16Ω - 5.3Ω	HPV-09106-DB	28Lx10Dx10H	9.08	6.4
HPV900-4072-2E1-01	9.6	13Ω - 5.3Ω	HPV-12906-DB	28Lx16Dx10H	12.9	5.8
HPV900-4096-2E1-01	12.0	11Ω - 4Ω	HPV-12906-DB	28Lx16Dx10H	12.9	5.8

Note: 460 V, Regeneration dc bus voltage = 800V

Table A2. 1 - 460V Brake Resistor Recommendations

Model	Power Dissipation kW (Worm Gear)	Resistor Value Range (Worm Gear)	Magnetek Part Number	Dimensions	Power Dissipation (kW)	Resistor Value (ohms)
HPV900-2025-2E1-01	1.2	27Ω - 8Ω	HPV-01311-DB	12Lx10Dx5H	1.3	11.1
HPV900-2031-2E1-01	1.6	20Ω - 8Ω	HPV-01709-DB	12Lx13Dx5H	1.65	8.7
HPV900-2041-2E1-01	2.4	14Ω - 4Ω	HPV-02506-DB	19Lx10Dx5H	2.48	5.8
HPV900-2052-2E1-01	3.2	10Ω - 4Ω	HPV-03505-DB	19Lx10Dx5H	3.52	5.3
HPV900-2075-2E1-01	4.0	8.3Ω - 2.7Ω	HPV-04004-DB	19Lx10Dx5H	4.0	3.6
HPV900-2088-2E1-01	4.8	6.8Ω - 2.7Ω	HPV-06206-DB	26.5Lx13Dx5H	6.2	5.8
HPV900-2098-2E1-01	6.4	5Ω - 2Ω	HPV-06703-DB	26.5Lx13Dx5H	6.7	2.8

Note: 230 V, Regeneration dc bus voltage = 400V

Table A2. 2 - 230V Brake Resistor Recommendations

Assumptions for Brake Resistor Recommendations

- 1) Peak regenerative requirement is: (Cube KW) * 2.5 * (Gear Efficiency) * (Motor Efficiency). This occurs at start of deceleration under maximum overhauling load (for counterweight < 50%, this is full load car, start of decel going down). From peak regen power the maximum resistor is calculated as: $R = V_{dc}^2 / P_{peak}$
- 2) Motor efficiency is 95%, jerk out is assumed to be infinite
- 3) 250% regenerative torque limit
- 4) Worm gear efficiency = 45%; planetary gears = 95%
- 5) For power dissipations, a 50% duty cycle is assumed (i.e. elevator runs continuously up and down but regenerates 50% of the time). Also, 100% regenerative power required. Average power = (Cube KW) * 1.0 * (Gear Efficiency) * (Motor Efficiency) * 0.5
- 6) Minimum resistor values based on 100% of device rated current.

Dynamic Braking Resistor Selection - Planetary Gear

Model	Power Dissipation kW (Planetary Gear)	Resistor Value Range (Planetary Gear)	Magnetek Part Number	Dimensions	Power Dissipation (kW)	Resistor Value (ohms)
HPV900-4008-2E1-01	1.7	77 Ω - 53 Ω	HPV-01860-DB	12Lx13Dx5H	1.78	59.4
HPV900-4012-2E1-01	2.5	52 Ω - 32 Ω	HPV-02536-DB	12Lx16Dx5H	2.5	36
HPV900-4016-2E1-01	3.4	$38 \Omega - 32 \Omega$	HPV-03633-DB	19Lx13Dx5H	3.56	32.9
HPV900-4021-2E1-01	5	25 Ω - 16 Ω	HPV-05519-DB	26.5Lx13Dx5H	5.5	19.2
HPV900-4027-2E1-01	6.8	19 Ω - 16 Ω	HPV-08020-DB	26.5Lx16Dx5H	7.96	20
HPV900-4034-2E1-01	8.5	16 Ω - 8 Ω	HPV-08709-DB	28Lx10Dx10H	8.72	8.6
HPV900-4041-2E1-01	10	13 Ω - 8 Ω	HPV-10510-DB	28Lx13Dx10H	10.5	10
HPV900-4052-2E1-01	14	9Ω-8Ω	HPV-16808-DB	28Lx16Dx10H	16.8	8
HPV900-4065-2E1-01	17	7.7Ω - 5.3Ω	HPV-24805-DB	30Lx18Dx16H	24.8	5.4
HPV900-4072-2E1-01	20	6.3Ω - 5.3Ω	HPV-24805-DB	30Lx18Dx16H	24.8	5.4
HPV900-4096-2E1-01	25	5.2 Ω - 4 Ω	HPV-25104-DB	30Lx18Dx24H	25.1	4.2

Note: 460 V, Regeneration dc bus voltage = 800V

Table A2. 3 - 460V Brake Resistor Recommendations

Model	Power Dissipation kW (Planetary Gear)	Resistor Value Range (Planetary Gear)	Magnetek Part Number	Dimensions	Power Dissipation (kW)	Resistor Value (ohms)
HPV900-2025-2E1-01	2.5	13 Ω - 8 Ω	HPV-04109-DB	19Lx10Dx5H	4.1	8.7
HPV900-2031-2E1-01	3.4	$9.5 \Omega - 8 \Omega$	HPV-04109-DB	19Lx10Dx5H	4.1	8.7
HPV900-2041-2E1-01	5	$6.4~\Omega$ - $4~\Omega$	HPV-05505-DB	19Lx13Dx5H	5.51	4.8
HPV900-2052-2E1-01	6.8	4.7 Ω - 4 Ω	HPV-07005-DB	26.5Lx13Dx5H	6.97	4.8
HPV900-2075-2E1-01	8.5	3.9Ω - 2.7Ω	HPV-11803-DB	28Lx10Dx10H	11.8	3.1
HPV900-2088-2E1-01	10	3.2Ω - 2.7Ω	HPV-11803-DB	28Lx10Dx10H	11.8	3.1
HPV900-2098-2E1-01	14	2.4Ω - 2Ω	HPV-16802-DB	28Lx16Dx10H	16.8	2

Note: 230 V, Regeneration dc bus voltage = 400V

Table A2. 4 - 230V Brake Resistor Recommendations

Assumptions for Brake Resistor Recommendations

- 1) Peak regenerative requirement is: (Cube KW) * 2.5 * (Gear Efficiency) * (Motor Efficiency). This occurs at start of deceleration under maximum overhauling load (for counterweight < 50%, this is full load car, start of decel going down). From peak regen power the maximum resistor is calculated as: $R = V_{dc}^2 / P_{peak}$
- 2) Motor efficiency is 95%, jerk out is assumed to be infinite
- 3) 250% regenerative torque limit
- 4) Worm gear efficiency = 45%; planetary gears = 95%
- 5) For power dissipations, a 50% duty cycle is assumed (i.e. elevator runs continuously up and down but regenerates 50% of the time). Also, 100% regenerative power required. Average power = (Cube KW) * 1.0 * (Gear Efficiency) * (Motor Efficiency) * 0.5
- 6) Minimum resistor values based on 100% of device rated current.

Dynamic Braking Resistor Fusing Selection

All fuses should be rated for 800VDC

Model	Fuse Type (Bussmann pn)	Fuse Size (in Amps)
HPV900-4008-2E1-01	FWS-10A20F	10A
HPV900-4012-2E1-01	FWS-15A20F	15A
HPV900-4016-2E1-01	FWJ-20A14F	20A
HPV900-4021-2E1-01	FWJ-25A14F	30A
HPV900-4027-2E1-01	FWJ-30A14F	30A
HPV900-4034-2E1-01	FWJ-50A	50A
HPV900-4041-2E1-01	FWJ-70A	70A
HPV900-4052-2E1-01	FWJ-70A	70A
HPV900-4065-2E1-01	FWJ-100A	100A
HPV900-4072-2E1-01	FWJ-100A	100A
HPV900-4096-2E1-01	FWJ-150A	150A

Table 27: 460V DB Fusing Recommendations

All fuses should be rated for at least 400VDC

Model	Fuse Type (Bussmann pn)	Fuse Size (in Amps)
HPV900-2025-2E1-01	FWH-23A14F	25A
HPV900-2031-2E1-01	FWH-40A	40A
HPV900-2041-2E1-01	FWH-70B	70A
HPV900-2052-2E1-01	FWH-70B	70A
HPV900-2075-2E1-01	FWH-100B	100A
HPV900-2088-2E1-01	FWH-100B	100A
HPV900-2098-2E1-01	FWH-150B	150A

Table 28: 230V DB Fusing Recommendations

IMPORTANT

Dynamic Braking Resistor Fusing:

- 1. Fusing is intended to limit drive damage in the event of an external resistor failure or short circuit.
- 2. Fusing will NOT protect DB resistors or wiring in the event of an overload.
- 3. Fuse both resistor legs mounting fuses as close to the drive as possible.
- 4. Always use fast acting semiconductor type fuses of sufficient voltage rating.

Three-Phase AC Input Reactor Selection

An input reactor can help minimize most drive nuisance tripping and faults caused by over-voltage and input line disturbances including line spikes. The parts listed below are based on 3% impedance and allow for ambient temperatures of 45°C. All reactors listed contain the following marks: CE, UL-508, and CSA.

Input Voltage	Cube HP	Cube KW	Model	Inductance (mH)	Amps	Weight (lbs)	Watts Loss	Magnetek Part Numbers
	5	3.7	-4008	2.10mH	11A	4.2lbs	40.9W	05P00620-0150
	7.5	5.5	-4012	1.60 mH	14A	4.3lbs	48.2W	05P00620-0165
	10	7.5	-4016	1.10 mH	21A	7.2lbs	57.4W	05P00620-0151
	15	11	-4021	0.82 mH	28A	9.5lbs	66.8W	05P00620-0152
	20	15	-4027	0.71 mH	35A	13lbs	102W	05P00620-0153
460 V	25	18	-4034	0.55 mH	46A	17lbs	99W	05P00620-0164
	30	22	-4041	0.38 mH	65A	22lbs	105W	05P00620-0155
	40	30	-4052	0.38 mH	65A	22lbs	105W	05P00620-0155
	50	37	-4065	0.29 mH	83A	26lbs	155W	05P00620-0156
	60	45	-4072	0.29 mH	83A	26lbs	155W	05P00620-0156
	75	55	-4096	0.18 mH	130A	37lbs	152W	05P00620-0169

Table 29: 460V Input Reactor Recommendations

Input Voltage	Cube HP	Cube KW	Model	Inductance (mH)	Amps	Weight (lbs)	Watts Loss	Magnetek Part Numbers
ronago	7.5	5.5	-2025	0.39 mH	28A	5.1lbs	48.2W	05P00620-0158
	10	7.5	-2031	0.27 mH	55A	18lbs	67W	05P00620-0159
	15	11	-2041	0.19 mH	65A	18lbs	87W	05P00620-0160
230 V	20	15	-2052	0.17 mH	83A	19lbs	119W	05P00620-0161
	25	18	-2075	0.17 mH	83A	19lbs	119W	05P00620-0161
	30	22	-2088	0.12 mH	104A	22lbs	94W	05P00620-0162
	40	30	-2098	0.08 mH	160A	34lbs	110W	05P00620-0168

Table 30: 230V Input Reactor Recommendations

Manufacturer Considerations:

When selecting an input reactor, the elevator load profile needs to be taking into account. Consider the following when selecting a manufacturer.

- Repeated 250% overloads current values
- Heating of inductors due to overloads and harmonics
- Saturation of inductor
- Life of reactor
- Ambient temperature vs. inductor current curve. The drive can operate at 45°C (110°F).

Three-Phase AC Harmonic Filter Selection

A harmonic filter can help minimize harmonic distortion caused by diode switching. The parts listed below provide performance levels of 5% total harmonic current distortion (THID) and can be used to meet IEEE-519. Open panel filters allow for ambient temperatures of 50°C while NEMA1 filters allow for ambient temperatures of 40°C. All harmonic filters listed contain the following marks: cUL, UL-508, and CSA.

Input	Cube	Cube				Magnetek Part Numbers	
Voltage	HP	KW	Model	Amps	Watts Loss	Open Panel	NEMA1
	5	3.7	-4008	11A	197	05P00058-1321	05P00058-1338
	7.5	5.5	-4012	14A	232	05P00058-1322	05P00058-1339
	10	7.5	-4016	21A	294	05P00058-1323	05P00058-1340
	15	11	-4021	27A	343	05P00058-1324	05P00058-1341
	20	15	-4027	34A	399	05P00058-1325	05P00058-1342
460 V	25	18	-4034	44A	472	05P00058-1326	05P00058-1343
	30	22	-4041	52A	533	05P00058-1327	05P00058-1344
	40	30	-4052	66A	621	05P00058-1328	05P00058-1345
	50	37	-4065	83A	735	05P00058-1329	05P00058-1346
	60	45	-4072	83A	735	05P00058-1329	05P00058-1346
	75	55	-4096	103A	844	05P00058-1330	05P00058-1347

Table 31: 460V Input Reactor Recommendations

Input	Cube	Cube				Magnetek Part Numbers	
Voltage	HP	KW	Model	Amps	Watts Loss	Open Panel	NEMA1
	7.5	5.5	-2025	27A	254	05P00058-1314	05P00058-1331
	10	7.5	-2031	34A	286	05P00058-1315	05P00058-1332
	15	11	-2041	44A	338	05P00058-1316	05P00058-1333
230 V	20	15	-2052	66A	439	05P00058-1317	05P00058-1334
	25	18	-2075	83A	506	05P00058-1318	05P00058-1335
	30	22	-2088	103A	591	05P00058-1319	05P00058-1336
	40	30	-2098	128A	664	05P00058-1320	05P00058-1337

Table 32: 230V Input Reactor Recommendations

Manufacturer Considerations:

When selecting a harmonic filter, the elevator load profile needs to be taking into account. Consider the following when selecting a manufacturer.

- Repeated 250% overloads current values
- Heating of inductors due to overloads and harmonics
- Saturation of inductor
- Ambient temperature vs. inductor current curve. The drive can operate at 45°C (110°F).

AC Input Fusing Selection

	Recommendation 1			F	Recommendatio	n 2
Model	Fuse Mfg	Fuse Model No.	Fuse Rating (Amps/Volts)	Fuse Mfg	Fuse Model No.	Fuse Rating (Amps/Volts)
HPV900-4008-2E1-01	Ferraz	A60Q25-2	25A/600V	Ferraz	A70QS25-14F	25A/690V
HPV900-4012-2E1-01	Ferraz	A60Q30-2	30A/600V	Ferraz	A70QS40-14F	40A/690V
HPV900-4016-2E1-01	Ferraz	A60Q30-2	30A/600V	Bussmann	FWH-80B	80A/500V
HPV900-4021-2E1-01	Ferraz	A70P50-4	50A/700V	Bussmann	FWH-80B	80A/500V
HPV900-4027-2E1-01	Ferraz	A70P70-4	70A/700V	Bussmann	FWH-100B	100A/500V
HPV900-4034-2E1-01	Ferraz	A70P80-4	80A/700V	Bussmann	FWH-125B	125A/500V
HPV900-4041-2E1-01	Ferraz	A70P80-4	80A/700V	Bussmann	FWH-125B	125A/500V
HPV900-4052-2E1-01	Ferraz	A70P100-4	100A/700V	Bussmann	FWH-125B	125A/500V
HPV900-4065-2E1-01	Ferraz	A70P125-4	125A/700V	Bussmann	FWH-150B	150A/500V
HPV900-4072-2E1-01	Ferraz	A70P150-4	150A/700V	Bussmann	FWH-175B	175A/500V
HPV900-4096-2E1-01	Ferraz	A70P200-4	200A/700V	Bussmann	FWH-200B	200A/500V

Table 33: 460V Fusing Recommendations

		Recommend	ation 1	Recommendation 2		
Model	Fuse Mfg	Fuse Model No.	Fuse Rating (Amps/Volts)	Fuse Mfg	Fuse Model No.	Fuse Rating (Amps/Volts)
HPV900-2025-2E1-01	Ferraz	A50P50-4	50A/500V	Bussmann	FWH-80B	80A/500V
HPV900-2031-2E1-01	Ferraz	A50P80-4	80A/500V	Bussmann	FWH-80B	80A/500V
HPV900-2041-2E1-01	Ferraz	A50P80-4	80A/500V	Bussmann	FWH-80B	80A/500V
HPV900-2052-2E1-01	Ferraz	A50P125-4	125A/500V	Bussmann	FWH-100B	100A/500V
HPV900-2075-2E1-01	Ferraz	A50P150-4	150A/500V	Bussmann	FWH-175B	175A/500V
HPV900-2088-2E1-01	Ferraz	A50P150-4	150A/500V	Bussmann	FWH-175B	175A/500V
HPV900-2098-2E1-01	Ferraz	A50P200-4	200A/500V	Bussmann	FWH-225B	225A/500V

Table 34: 230V Fusing Recommendations

Line Filter Selection

The suggested Line Filters to help meet the requirements for the following CE standards:

- EN 12015:2004
- EN 12016:2004

Note: also see CE Guidelines on page 164 for additional installation guidelines

Model	Filter Type (SCHAFFNER pn)	Current Rating (A)	Voltage Rating (V)
HPV900-4008-2E1-01	FS29041-16-99	16A	480V
HPV900-4012-2E1-01	FS29041-30-99	30A	480V
HPV900-4016-2E1-01	FS29041-30-99	30A	480V
HPV900-4021-2E1-01	FS29041-42-99	42A	480V
HPV900-4027-2E1-01	FS29041-42-99	42A	480V
HPV900-4034-2E1-01	FS29040-75-99	75A	480V
HPV900-4041-2E1-01	FS29040-75-99	75A	480V
HPV900-4052-2E1-01	FS29040-75-99	75A	480V
HPV900-4065-2E1-01	FS29040-150-99	150A	480V
HPV900-4072-2E1-01	FS29040-150-99	150A	480V
HPV900-4096-2E1-01	FS29040-150-99	150A	480V

Table 35: 460V Line Filter Recommendations

Model	Filter Type (SCHAFFNER pn)	Current Rating (A)	Voltage Rating (V)
HPV900-2025-2E1-01	FS29021-42-99	42A	250V
HPV900-2031-2E1-01	FS29021-42-99	42A	250V
HPV900-2041-2E1-01	FS29021-75-99	75A	250V
HPV900-2052-2E1-01	FS29021-75-99	75A	250V
HPV900-2075-2E1-01	FS29020-120-99	120A	250V
HPV900-2088-2E1-01	FS29020-120-99	120A	250V
HPV900-2098-2E1-01	FS29020-200-99	200A	250V

Table 36: 230V Line Filter Recommendations

Selecting and Mounting of Encoder

Encoder Specification

The HPV 900 Series 2 has connections for an incremental two-channel quadrature encoder.

For better noise immunity, the HPV 900 Series 2 provides...

- an isolated power supply, which separates the processor power from the encoder
- optically isolated encoder signals from the HPV 900 Series 2's processor

Encoder Feedback

Supply Voltage: 12VDC or 5VDC
Capacity: 200mA or 400mA
PPR: 600 - 40,000
Maximum Frequency: 300 kHz
Input: 2 channel quadrature
5 or 12 volts dc differential

5 or 12 volts dc different (A, /A, B, /B) {Z,/Z for Incremental PM}

Encoder Considerations

Electrical interference and mechanical speed modulations are common problems that can result in improper speed feedback getting to the drive. To help avoid these common problems, the following electrical and mechanical considerations are suggested.

IMPORTANT

Proper encoder speed feedback is essential for a drive to provide proper motor control.

Electrical Considerations

- If possible, insulate both the encoder case and shaft from the motor. For more information, see Insulating Encoder from Motor on page 179.
- Use twisted pair cable with shield tied to chassis ground at drive end. For more information, see Encoder Wiring on page 27.
- Use limited slew rate differential line drivers.
 For more information, see Differential Line Drivers on page 181.
- Do not allow capacitors from internal encoder electronics to case. For more information, see Capacitors from Electronics to Case on page 182.
- Do not exceed the operating specification of the encoder/drive. For more information, see Exceeding Operating Specification on page 182.
- Use the proper encoder supply voltage and use the highest possible voltage available

(i.e. HPV 900 Series 2 - 12VDC preferred). For more information, see Encoder Supply Voltage on page 183.

Mechanical Considerations

- Use direct motor mounting without couplings. For more information, see Direct Motor Mounting on page 180.
- Use hub or hollow shaft encoder with concentric motor stub shaft. For more information, see motor stub shaft on page 180.
- If possible, use a mechanical protective cover for exposed encoders. For more information, see Encoder Protective Covers on page 181.

Encoder Mounting

Insulating Encoder from Motor

It is preferred that both the encoder case and shaft are insulated from the motor, in order to minimize encoder bearing currents and ground noise.

There will be PWM electrical noise on the motor shaft that will take the easiest path to ground. If the encoder is not electrically isolated from the motor, this path could be through the encoder bearings and/or electronics. Encoder bearing current will reduce the life of the bearings and create additional ground noise. The solution would be to electrically isolate both the encoder shaft and case from the motor.

Insulating the encoder case from the motor also reduces ground current coupling from the motor frame to the internal electronics of the encoder. Ground noise from the motor frame can disturb the operation of the encoder and propagate down the connected cable to disturb the transmission of the encoder signals. (i.e. there can be coupling from the case to the internal electronics even though a discrete capacitor is not present)

Figure 57 shows how to insulate a hollow-shaft encoder from the motor (similar mounting hardware and insulating insert can be used for hub-shaft encoders).

Direct Motor Mounting

Use direct motor mounting without couplings, in order to avoid eccentricities and to provide for zero backlash.

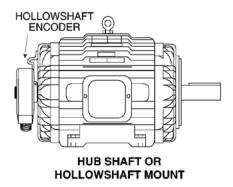


Figure 54: Direct Motor Mount

Direct mounted encoders do not have shafts and are mounted directly onto the motor shaft. Examples include hub-shaft or hollow-shaft models with integral flexible mounts. These have no separate shaft to shaft coupling. In addition, there may be no need for mounting brackets or adapters.

Direct mounted encoders do not have shafts and are mounted directly onto the motor shaft. Examples include hub-shaft or hollow-shaft models with integral flexible mounts.

These have no separate shaft to shaft coupling. In addition, there may be no need for mounting brackets or adapters.

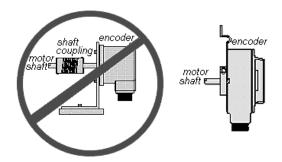


Figure 55: Avoiding Couplings

Motor Stub Shaft

Use hub or hollow shaft encoder with concentric motor stub shaft and use a flexible encoder mount rather than a flexible shaft coupling.

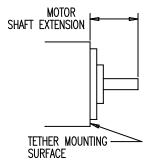


Figure 56: Motor Stub Shaft

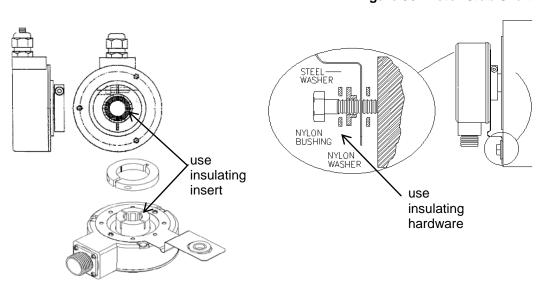


Figure 57: Insulating Encoder from Motor

It is preferred that a solid shaft extension is specified from the motor manufacturer for a length recommended by the encoder manufacturer.

Although it is not the preferred method, installations that employ a screwed on sub shaft adapter should:

- use the original hole used to machine the motor shaft
- use locktight to hold the thread in position
- align the stub shaft to 0.002 inches TIR or less with a dial indicator

A hub-shaft or hollow-shaft encoder should be mounted so that its shaft receptacle is in as close as possible alignment with the axis of the motor shaft. Clamp or set screws should then be tightened to secure the encoder.

REMEMBER: If you are following the preferred method of insulating the encoder from the motor, install the proper insulating hardware.

NOTE: Do not defeat or restrict the flexure. This causes failure of the encoder or driving shaft bearings.

Encoder Protective Covers

In order to protect the encoders from mechanical damage, it is preferred that for exposed encoders a mechanical protective cover is used.

Encoders are vulnerable to mechanical damage from impact. Encoders can be damaged by impact during installation or during exposed operation. Motors are even sometimes lifted by the encoders on one end. Therefore, it is preferred that the encoder be protected by a cover as shown below.

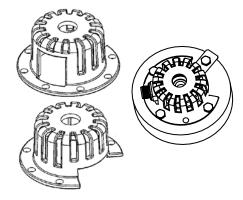


Figure 58: Protective Encoder Covers

Differential Line Drivers

Use limited slew rate differential line drivers, in order to minimize transmission line reflections use type 7272 drivers.

Encoder's line drivers transition from logic states in a fraction of a microsecond. The fast rise and fall times of the driver's circuitry can interact with the cable impedance and create significant ringing on the receiver end of the cable. This can interfere with the encoder signals and the operation of the drive. To reduce the ringing, it is recommended that the encoder use type 7272 line drivers, which have slower rise and fall times.

Also to improve performance, line driver outputs should use differential pairs of complementary outputs, each paired with its inverse. This allows the signal to be used with a differential line receiver, which improves the noise margin, cancels common-mode noise and helps to reject ringing from the cable.

Single-Ended Encoders

Although not recommended due to the absence of noise immunity, the HPV900 S2 drive can be run with singled ended encoders. Connections are dependant on what revision of board is used.

For boards with T31 as part of the part number, use connections shown in Figure 59.

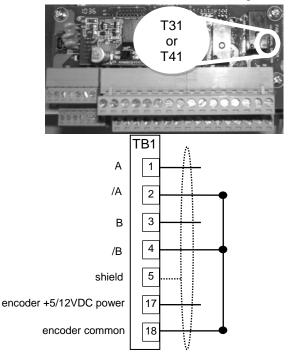


Figure 59: Single-Ended Encoder on T31

Board

For boards with T41 as part of the part number, use connections shown in Figure 60.

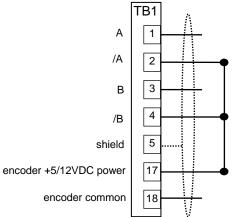


Figure 60: Single-Ended Encoder on T41

Board

Capacitors from Electronics to Case

Do not allow capacitors from internal encoder electronics to case, in order to minimize ground current noise injection and minimize the coupling of high frequency noise.

Encoders are sometimes supplied with an internal capacitor from circuit common to case ground to drain electrical noise from common to building ground. However, PWM drives have extremely high frequency noise that is coupled to the frame and shaft of the motor. A capacitor placed between the encoder case and the encoder electronics will couple this noise into the encoder, where it can interfere with normal operation.

The result is intermittent rough operation, motor reversal or no operation at all. The presumption is that there is a drive or encoder problem. An improvement is to remove any internal encoder capacitors between electrical common and the case.

The above analysis assumes that the electrical wiring is correct and that the shield on the encoder cable is properly grounded, see *Encoder Wiring on page 27.*

The scope traces in Figure 61 and Figure 62 show a noise comparison of output signals from similar encoders with and without internal capacitors, both connected to a motor with typical PWM switching noise on the frame.

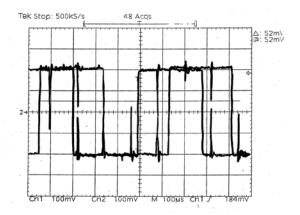


Figure 61: Encoder with a capacitor (common to ground)

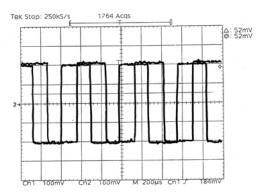


Figure 62: Encoder with no capacitor (common to ground)

Exceeding Operating Specification

Do not exceed the operating specification of the encoder/drive, in order to prevent the encoder from providing incorrect data.

All encoders have inherent mechanical and electronic limitations regarding speed. The combination of several design factors including bearings, frequency response of the electronics, and PPR of the encoder, etc. combine to determine "maximum operating speed". Exceeding the maximum speed may result in incorrect data or premature failure. Both the electrical and mechanical encoder specifications can be provided by the encoder manufacturer.

To determine the encoder's maximum operating speed:

Step 1: Determine maximum electronic operating speed in RPM.

$$RPM = \frac{Encoder \ freq. \ response (kHz) \ x \ 60}{Encoder \ PPR}$$

Step 2:

- A. If the RPM calculated in Step 1 is less than or equal to the encoder's maximum mechanical RPM specification, then the RPM calculated in Step 1 is the maximum operating speed specification for this particular encoder application.
- B. If the RPM calculated in Step 1 is greater than the encoder's maximum mechanical RPM specification, then the maximum mechanical RPM specification is the maximum operating speed for this encoder application.

Step 3:

Compare the maximum operating speed as determined in Step 2 above with the application requirements.

To determine if the application exceeds the operating specification of the HPV 900 Series 2:

 Calculate the maximum pulses per revolution (PPR) for this application (using the HPV 900 Series 2 frequency limit of 300 kHz and 120% of the application's top speed)

$$PPR_{max} = \frac{300,000 \text{ Hz x } 60}{max \text{ application RPM } \times 1.2}$$

 Verify that the selected encoder's PPR is below the calculated maximum PPR (PPRmax) for this application

Encoder Supply Voltage

Ensure proper encoder supply voltage and use highest possible voltage available, in order to ensure proper operation and increase noise immunity

Ensure that the voltage drop of the encoder wiring is such that the minimum power supply voltage for operating the encoder is not violated. (i.e. $5VDC \pm 5\%$ power supply and $5VDC \pm 10\%$ encoder specification is violated when the encoder draws 0.3 A and it is wired with 500 ft at 22 AWG)

- Use an encoder with an internal supply regulator
- Use a wide supply range encoder (i.e. 5 – 15 VDC)

It is also preferred that the encoder be powered by the HPV 900 Series 2's 12VDC power supply in order to help with noise immunity by having the signals at a higher voltage level.

Suggested Wire Sizes

Model	Input Power (I Power (U,V,W),	R,S,T) and Output ⊝1, ⊕2, ⊖	Ground 7	Terminals
Wiodei	Wire size range AWG (mm²)	Torque Spec Ib·in (N·m)	Wire size range AWG (mm ²)	Torque Spec Ib•in (N•m)
HPV900-2025-2E1-01	8 (8.4)	15.6 (1.76) ¹	8 (8.4) 1	15.6 (1.76)
HPV900-2031-2E1-01	8 (8.4) ¹	15.6 (1.76) ¹	8 (8.4) 1	15.6 (1.76)
HPV900-2041-2E1-01	6 (14)	57.3 (6.47)	8 (8)	57.3 (6.47)
HPV900-2052-2E1-01	4 (22)	57.3 (6.47)	8 (8)	57.3 (6.47)
HPV900-2075-2E1-01	4 (22)	57.3 (6.47)	6 (14)	57.3 (6.47)
HPV900-2088-2E1-01	2 (38)	57.3 (6.47)	4 (22)	57.3 (6.47)
HPV900-2098-2E1-01	1 (42.4)	104.2 (11.76)	4 (22)	57.3 (6.47)
HPV900-4008-2E1-01	14-10 (2.1-5.3)	15.6 (1.76)	12-10 (3.5-5.5)	15.6 (1.76)
HPV900-4012-2E1-01	12-10 (3.5-5.5)	15.6 (1.76)	12-10 (3.5-5.5)	15.6 (1.76)
HPV900-4016-2E1-01	10 (5.5)	15.6 (1.76)	10 (5.5)	15.6 (1.76)
HPV900-4021-2E1-01	8-6 (8-14)	26.0 (2.94)	8 (8)	26.0 (2.94)
HPV900-4027-2E1-01	6 (14)	26.0 (2.94)	8 (8)	26.0 (2.94)
HPV900-4034-2E1-01	6 (14)	26.0 (2.94)	8 (8)	26.0 (2.94)
HPV900-4041-2E1-01	6 (14)	26.0 (2.94)	8 (8)	26.0 (2.94)
HPV900-4052-2E1-01	4 (22)	26.0 (2.94)	6 (14)	26.0 (2.94)
HPV900-4065-2E1-01	4 (22)	57.3 (6.47)	4 (22)	57.3 (6.47)
HPV900-4072-2E1-01	2 (38)	57.3 (6.47)	4 (22)	57.3 (6.47)
HPV900-4096-2E1-01	1 (42.4)	57.3 (6.47)	4 (22)	57.3 (6.47)

	D4 1	B2	Control Wiring Terminals				
	B1, B2		TB1		TB2		
Model	Wire size range AWG (mm²)	Torque Spec lb∙in (N•m)	Wire size range AWG (mm²)	Torque Spec Ib•in (N•m)	Wire size range AWG (mm²)	Torque Spec Ib·in (N·m)	
HPV900-2025-2E1-01	8 (8.4)	15.6 (1.76) ¹	28-14 (0.1-2)	1.73 (0.2)	28-14 (0.1-2)	4.34 (0.5)	
HPV900-2031-2E1-01	8 (8.4)	15.6 (1.76) ¹	28-14 (0.1-2)	1.73 (0.2)	28-14 (0.1-2)	4.34 (0.5)	
HPV900-2041-2E1-01	6 (14)	26.0 (2.94)	28-14 (0.1-2)	1.73 (0.2)	28-14 (0.1-2)	4.34 (0.5)	
HPV900-2052-2E1-01	4 (22)	26.0 (2.94)	28-14 (0.1-2)	1.73 (0.2)	28-14 (0.1-2)	4.34 (0.5)	
HPV900-2075-2E1-01	4 (22)	26.0 (2.94)	28-14 (0.1-2)	1.73 (0.2)	28-14 (0.1-2)	4.34 (0.5)	
HPV900-2088-2E1-01	2 (38)	26.0 (2.94)	28-14 (0.1-2)	1.73 (0.2)	28-14 (0.1-2)	4.34 (0.5)	
HPV900-2098-2E1-01	1 (42.4)	57.3 (6.47)	28-14 (0.1-2)	1.73 (0.2)	28-14 (0.1-2)	4.34 (0.5)	
HPV900-4008-2E1-01	14-10 (2.1-5.3)	15.6 (1.76)	28-14 (0.1-2)	1.73 (0.2)	28-14 (0.1-2)	4.34 (0.5)	
HPV900-4012-2E1-01	12-10 (3.5-5.5)	15.6 (1.76)	28-14 (0.1-2)	1.73 (0.2)	28-14 (0.1-2)	4.34 (0.5)	
HPV900-4016-2E1-01	10 (5.5)	15.6 (1.76)	28-14 (0.1-2)	1.73 (0.2)	28-14 (0.1-2)	4.34 (0.5)	
HPV900-4021-2E1-01	8-6 (8-14)	26.0 (2.94)	28-14 (0.1-2)	1.73 (0.2)	28-14 (0.1-2)	4.34 (0.5)	
HPV900-4027-2E1-01	6 (14)	26.0 (2.94)	28-14 (0.1-2)	1.73 (0.2)	28-14 (0.1-2)	4.34 (0.5)	
HPV900-4034-2E1-01	6 (14)	26.0 (2.94)	28-14 (0.1-2)	1.73 (0.2)	28-14 (0.1-2)	4.34 (0.5)	
HPV900-4041-2E1-01	6 (14)	26.0 (2.94)	28-14 (0.1-2)	1.73 (0.2)	28-14 (0.1-2)	4.34 (0.5)	
HPV900-4052-2E1-01	4 (22)	26.0 (2.94)	28-14 (0.1-2)	1.73 (0.2)	28-14 (0.1-2)	4.34 (0.5)	
HPV900-4065-2E1-01	4 (22)	57.3 (6.47)	28-14 (0.1-2)	1.73 (0.2)	28-14 (0.1-2)	4.34 (0.5)	
HPV900-4072-2E1-01	2 (38)	57.3 (6.47)	28-14 (0.1-2)	1.73 (0.2)	28-14 (0.1-2)	4.34 (0.5)	
HPV900-4096-2E1-01	2 (38)	57.3 (6.47)	28-14 (0.1-2)	1.73 (0.2)	28-14 (0.1-2)	4.34 (0.5)	

Note: wire ratings from: Table 2 – Allowable Ampacities of Insulated Copper Conductors Inside Industrial Control Equipment Enclosures (Based on a Room Ambient Temperature of 40°C (104°F)) source: CAN/CSA-B44.1-M91

Table 37: Suggested Wire Sizes

_

ⁱ Recommended Lug for Frame 2 is Molex 19099-0050 due to terminal size

Input / Output Rating

		Input		Outpu	t
Model	Voltage V	Current A	Short Circuit Withstand Rating	Voltage V	Current A
HPV900-2025-2E1-01	200-240	30	10KA	0-input voltage	25
HPV900-2031-2E1-01	200-240	37	10KA	0-input voltage	31
HPV900-2041-2E1-01	200-240	49	10KA	0-input voltage	41
HPV900-2052-2E1-01	200-240	63	10KA	0-input voltage	52
HPV900-2075-2E1-01	200-240	83	10KA	0-input voltage	75
HPV900-2088-2E1-01	200-240	98	10KA	0-input voltage	88
HPV900-2098-2E1-01	200-240	109	10KA	0-input voltage	98
HPV900-4008-2E1-01	380-480	10	10KA	0-input voltage	8
HPV900-4012-2E1-01	380-480	14	10KA	0-input voltage	12
HPV900-4016-2E1-01	380-480	19	10KA	0-input voltage	16
HPV900-4021-2E1-01	380-480	25	10KA	0-input voltage	21
HPV900-4027-2E1-01	380-480	33	10KA	0-input voltage	27
HPV900-4034-2E1-01	380-480	38	10KA	0-input voltage	34
HPV900-4041-2E1-01	380-480	46	10KA	0-input voltage	41
HPV900-4052-2E1-01	380-480	58	10KA	0-input voltage	52
HPV900-4065-2E1-01	380-480	72	10KA	0-input voltage	65
HPV900-4072-2E1-01	380-480	80	10KA	0-input voltage	72
HPV900-4096-2E1-01	380-480	107	10KA	0-input voltage	96

Table 38: Input / Output Ratings

Single Phase Ratings

The HPV900 Series 2 drives may be run with a single phase VAC input. However, in order to run the drive single phased, the drive must be derated by 60%. See Table 39 below for the single phased ratings.

Rated Input Voltage	Continuous Output Current General Purpose Rating	Continuous Output Current Elevator Duty Cycle Rating	Maximum Output Current for 5 Sec	Frame Size	Model Number
	10	10.7	25	2	HPV900-2025-2E1-01
_	12.4	13.3	31	2	HPV900-2031-2E1-01
2	16.4	17.6	41	3.5	HPV900-2041-2E1-01
3 0	20.8	22.2	52	3.5	HPV900-2052-2E1-01
V	30	32.1	75	4	HPV900-2075-2E1-01
	35.2	37.7	88	4	HPV900-2088-2E1-01
	39.2	42	98	5	HPV900-2098-2E1-01
	3.2	3.4	8	1	HPV900-4008-2E1-01
	4.8	5.1	12	2	HPV900-4012-2E1-01
	6.4	6.8	16	2	HPV900-4016-2E1-01
	8.4	9	21	3	HPV900-4021-2E1-01
4	10.8	11.6	27	3	HPV900-4027-2E1-01
6 0	13.6	14.6	34	4	HPV900-4034-2E1-01
V	16.4	17.6	41	4	HPV900-4041-2E1-01
_	20.8	22.2	52	4	HPV900-4052-2E1-01
	26	27.8	65	5	HPV900-4065-2E1-01
	28.8	30.8	72	5	HPV900-4072-2E1-01
	38.4	41.1	96	5	HPV900-4096-2E1-01

Table 39: Single Phase Ratings

Carrier Frequency Ratings

The HPV900 Series 2 drives may be run with a high PWM switching Frequency. The default drive ratings are based off of 10kHz setting. The drive will be derated according to the table below if the setting for PWM Freq is greater than 10kHz.

	- 1 - 3							
	16 kHz	56.3	62	92.3	104	169	176	196
urrent	15 kHz	57.3	64.6	94.0	108	172	183	204
m Output C	4 X X X	58.3	67.2	2'96	113	175	191	212
Maximum Output Current for 5 Sec	13 kHz	59.4	8.69	97.4	117	178	198	221
Maxim	42 KHz	60.4	72.3	99.1	121	181	205	229
	11 KHz	61.5	74.9	101	126	184	213	237
D	16 KHz	24.3	26.8	39.8	44.9	72.9	92	84.7
Continuous Output Current Elevator Duty Cycle** Rating	15 KHz	24.8	27.9	40.6	46.8	74.3	79.2	88.2
Continuous Output Current or Duty Cycle**	44 KHz	25.2	29.0	41.3	48.7	75.6	82.4	91.7
Contir Output Duty	13 KHz	25.6	30.1	42.1	50.5	77	85.5	95.3
Clevator	12 KHz	26.1	31.2	42.8	52.4	78.3	88.7	98.8
Ш	11 KHz	26.5	32.4	43.5	54.3	79.7	91.9	102
	16 kHz	22.5	24.8	36.9	41.6	67.5	70.4	78.4
t ating	15 KHz	22.9	25.8	37.6	43.3	68.8	73.3	81.7
Continuous Output Current General Purpose Rating	14 KHz	23.3	26.9	38.3	45.1	70	76.3	84.9
Contir Sutput	13 KHz	23.8	27.9	38.9	46.8	71.3	79.2	88.2
Gener	12 KHz	24.2	28.9	39.6	48.5	72.5	82.1	91.5
	11 KHz	24.6	30	40.3	50.3	73.8	85.1	94.7
Drive	Number	2025	2031	2041	2052	2075	2088	2098

Table 40: 200V Series Drives Carrier Frequency Ratings

Carrier Frequency Ratings

The HPV900 Series 2 drives may be run with a high PWM switching Frequency. The default drive ratings are based off of 10kHz setting. The drive will be derated according to the table below if the setting for PWM Freq is greater than 10kHz.

	16 KHz	18	27	32	47.3	54	76.5	87.1	104	146	153	192
urrent	15 KHz	18.3	27.5	33.3	48.1	56.3	6.77	89.7	108	149	158	200
itput C Sec	41 X	18.7	28	34.7	49	58.5	79.3	92.3	113	152	162	208
um Output for 5 Sec	13 KHz	19	28.5	36	49.9	8.09	80.8	94.8	117	154	167	216
Maximum Output Current for 5 Sec	12 KHz	19.3	29	37.3	50.8	63	82.2	97.4	121	157	171	224
	t 4 KHz	19.7	29.5	38.7	51.6	65.3	86.6	6.66	126	160	118	232
D	16 KHz	7.8	11.7	13.8	20.4	23.3	33.1	37.6	44.9	63.2	66.1	82.9
Continuous Output Current Elevator Duty Cycle** Rating	15 KHz	7.9	11.9	14.4	20.8	24.3	33.7	38.8	46.8	64.4	68.0	86.4
Continuous Output Current or Duty Cycle**	4 t X X X	8.1	12.1	15	21.2	25.3	34.3	39.9	48.7	65.5	70.0	90
Contir output Duty	13 KHz	8.2	12.3	15.6	21.6	26.2	34.9	41	50.5	2.99	71.9	93.3
Clevator	12 KHz	8.4	12.5	16.1	21.9	27.2	35.5	42.1	52.4	62.9	73.9	96.8
Ш	11 KHz	8.5	12.7	16.7	22.3	28.2	36.1	43.2	54.3	69	75.8	100
	16 kHz	7.2	10.8	12.8	18.9	21.6	30.6	34.9	41.6	58.5	61.2	76.8
t ating	15 KHz	7.3	11	13.3	19.3	22.5	31.2	35.9	43.3	59.6	63	80
Continuous Output Current General Purpose Rating	14 KHz	7.5	11.2	13.9	19.6	23.4	31.7	36.9	45.1	60.7	64.8	83.2
Continuous output Currer ral Purpose F	13 KHz	7.6	11.4	14.4	20	24.3	32.3	37.9	46.8	61.7	9.99	86.4
C Gener	12 KHz	7.7	11.6	14.9	20.3	25.2	32.9	39	48.5	62.8	68.4	89.6
	11 X X	6.7	11.8	15.5	20.7	26.1	33.4	40	50.3	63.9	70.2	92.8
Drive Model	Number	4008	4012	4016	4021	4027	4034	4041	4052	4065	4072	4096

Table 41: Carrier Frequency Ratings

Watts Loss

460V	Power loss	230V	Power loss
HPV900-4008-2E1-01	132 watts	HPV900-2025-2E1-01	229 watts
HPV900-4012-2E1-01	275 watts	HPV900-2031-2E1-01	294 watts
HPV900-4016-2E1-01	314 watts	HPV900-2041-2E1-01	378 watts
HPV900-4021-2E1-01	360 watts	HPV900-2052-2E1-01	481 watts
HPV900-4027-2E1-01	499 watts	HPV900-2075-2E1-01	759 watts
HPV900-4034-2E1-01	606 watts	HPV900-2088-2E1-01	969 watts
HPV900-4041-2E1-01	842 watts	HPV900-2098-2E1-01	989 watts
HPV900-4052-2E1-01	1173 watts		
HPV900-4065-2E1-01	1280 watts		
HPV900-4072-2E1-01	1877 watts		
HPV900-4096-2E1-01	2819 watts		

Note: values calculated from the worse case condition of 107% of general purpose continuous current rating, 10kHz carrier frequency.

Table 42: Watts Loss per Drive Rating

Relay Specifications RELAY 1 & 2

Contact Data

	Resistive load	
	(p.f. = 1)	
Load	N.O. Contact	N.C. Contact
	5A at 277VAC	3A at 277VAC
	10A at 125VAC	3A at 30VDC
Rated Load	5A at 30VDC	
Carry Current	10A	3A
Max. operating voltage	277VAC, 30VDC	
Max. operating current	10A	3A
Max. operating capacity	1,385VA, 150W	831VA, 90W

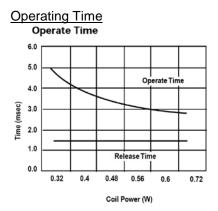


Figure 63: Operate Time

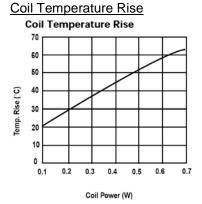


Figure 64: Coil Temperature

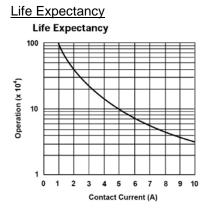


Figure 65: Relay Life Expectancy

Replacement Parts

part number	description	detailed description
HPV9-CTL0020-01	FRU,HPV900 Series 2,Ctl PCB, Std Sfw	Includes the control PCB with standard software
HPV9-ENDAT-01	FRU,HPV900 Series 2, EnDat Option Card	Includes EnDat Option card, hardware standoffs and ground clamp
HPV9-TER0010	FRU,HPV900 Series 2,Control TBs	Terminal board, including terminal blocks
HPV9-OPERATOR	FRU, HPV900 Series 2 Operator, Elevator	Digital operator
HPV9-RS422CBL	FRU,HPV900 Series 2, Serial Cable, RS422	Includes DB9, RS422 connection to discrete wires and instructions
HPV9-COVRTOP1	FRU,HPV900 Series 2, TOP, FRAME 1	Includes the top front plastic cover for Frame 1
HPV9-COVRTOP2	FRU,HPV900 Series 2, TOP, FRAME 2	Includes the top front plastic cover for Frame 2
HPV9-COVRTOP3	FRU,HPV900 Series 2, TOP, FRAME 3	Includes the top front plastic cover for Frame 3
HPV9-COVRTOP4	FRU,HPV900 Series 2, TOP, FRAME 4	Includes the top front metal cover for Frame 4
HPV9-COVRTOP5	FRU,HPV900 Series 2, TOP, FRAME 5	Includes the top front metal cover for Frame 5
HPV9-COVRBOT1	FRU,HPV900 Series 2, BOTTOM, FRAME 1	Includes the bottom front plastic cover for Frame 1
HPV9-COVRBOT2	FRU,HPV900 Series 2, BOTTOM, FRAME 2	Includes the bottom front plastic cover for Frame 2
HPV9-COVRBOT3	FRU,HPV900 Series 2, BOTTOM, FRAME 3	Includes the bottom front plastic cover for Frame 3
HPV9-COVRBOT4	FRU,HPV900 Series 2, BOTTOM, FRAME 4	Includes the bottom front metal cover for Frame 4
HPV9-COVRBOT5	FRU,HPV900 Series 2, BOTTOM, FRAME 5	Includes the bottom front metal cover for Frame 5

Table 43: Replacement Parts

Index

	Prk Open Elt	110
	Brk Open FltBrk Pick Flt	
Α	Brk Pick Fit Ena user switch	
Ab Off Delay parameter, closed loop45	Brk Pick Fit End user switch	
Ab Zero Spd Lev parameter, closed loop44	Bus Voltage analog output	
ABS Ref Offset parameter54	bus voltage analog output	99
AC Input Fusing Values177	•	
AC Input Reactor Values175, 176	C	
Accel Jerk In parameter63	Car Going Down logic output	96
Accel Jerk Out parameter	Car Going Up logic output	
Accel Rate parameter	Carrier Frequency Ratings	
Alarm logic output96	CE Line Filter Values	
Alarm+Flt logic output96	Charge Fault logic output	
Align VIt Factor parameter68	Charge Fit	
Alignment Procedure142–47	Circuit Block Diagram	
	Circuit Breakers	
Alignmnt is Done		
Ana Out Gain parameter	Close Contact logic output	
Ana Out Offset parameter51	Cont Confirm Src user switch	
Analog Input Features	Cont Dwell Time parameter	
Analog Input Wiring, Differential30	Contactor DO Dly parameter	
Analog Output Connections30	Contactor Flt	_
Analog Output Features14	Contactor Flt logic output	
Analog Outputs C4 Submenu98–99	Contactor Flt Time parameter	
ARB Decay Rate parameter53	Contract Car Speed parameter	
ARB Inertia parameter53	Contract Mtr Spd parameter	
ARB Select User Switch88	Control Circuit	
ARB Start Time parameter53	Cube ID Fault	
ARB Torque Time53	Curr Reg Flt	
AT Cont Flt118	Curr Reg Flt logic output	
Auto Proko logio outout	Current Out analog output	aa
Auto Brake logic output96	Current Out analog output	
Auto Stop user switch82	Current Out analog output	
Auto Stop user switch82 Autoalign Volts parameter71	D	
Auto Stop user switch	D	
Auto Stop user switch	D D Axis Induct parameter	75
Auto Stop user switch	D D Axis Induct parameter DB Fusing Values	75 174
Auto Stop user switch	D Axis Induct parameter DB Fusing Values DB Protection user switch	75 174 80
Auto Stop user switch	D Axis Induct parameter DB Fusing Values DB Protection user switch DB Voltage	75 174 80 121
Auto Stop user switch	D Axis Induct parameter DB Fusing Values DB Protection user switch DB Voltage DC Bus Voltage display	75 174 80 121
Auto Stop user switch	D Axis Induct parameter DB Fusing Values DB Protection user switch DB Voltage DC Bus Voltage display DC Choke Connections	75 80 121 104
Auto Stop user switch	D Axis Induct parameter DB Fusing Values DB Protection user switch DB Voltage DC Bus Voltage display DC Choke Connections DC Start Level parameter, open loop	75 80 121 104 31
Auto Stop user switch	D Axis Induct parameter DB Fusing Values DB Protection user switch DB Voltage DC Bus Voltage display DC Choke Connections DC Start Level parameter, open loop DC Start Time parameter, open loop	75 174 80 121 104 31 45
Auto Stop user switch	D Axis Induct parameter	
Auto Stop user switch	D D Axis Induct parameter DB Fusing Values DB Protection user switch DB Voltage DC Bus Voltage display DC Choke Connections DC Start Level parameter, open loop DC Stop Freq parameter, open loop DC Stop Level parameter, open loop	
Auto Stop user switch	D Axis Induct parameter	
Auto Stop user switch	D Axis Induct parameter	
Auto Stop user switch	D Axis Induct parameter	
Auto Stop user switch	D Axis Induct parameter	
Auto Stop user switch	D Axis Induct parameter	
Auto Stop user switch	D Axis Induct parameter	
Auto Stop user switch	D Axis Induct parameter	
Auto Stop user switch	D Axis Induct parameter	
Auto Stop user switch	D Axis Induct parameter	
Auto Stop user switch	D Axis Induct parameter	
Auto Stop user switch	D Axis Induct parameter	
Auto Stop user switch	D Axis Induct parameter	
Auto Stop user switch	D Axis Induct parameter	
Auto Stop user switch	D Axis Induct parameter	
Auto Stop user switch	D Axis Induct parameter	
Auto Stop user switch	D Axis Induct parameter	

Drive Ovrload Fault	Drive Ovrload Fault	122	Flux Sat Slong parameter, closed loop	71
Drive Temp Alarm 122 Flux Voltage display 104 Drive Weight 106 Flux Weakening 55, 71 Drive Weight 166 Flux Weakening 55, 71 Dry Fable Size user switch 88 8 Bry Fast Disable user switch 88 Bry Fast Disable user switch 88 Flux Weakening Lev parameter 68 Dry Arst Disable user switch 83 Flux Weakening Lev parameter 68 Dynamic Braking Resistor Values 172, 173 37 Frequency Out analog output 99 Dynamic Braking Resistor Values 172, 173 78 Frequency Out analog output 99 Fuser Fault togic output 99 Fuse Fault logic output 99 Fuse Fault logic output 99 Fuser Fault one of the parameter 103 Gain Ching Level parameter, closed loop 43 Gound Fault 42 Elevator Duty Cycle Current Rating 162 Gain Ching Level parameter, closed loop 43 Gound Fault 42 Gain Ching Level parameter, closed loop 43 Gound Fault 42 Mancod Villey Ching Level parameter 42 Mancod Ville				
Drive Temp display				
Drive Weight. 66 Flux Weakening Lev parameter. 68 Dry Fast Disable user switch 88 Bry Fast Disable user switch 88 Bry Fast Disable user switch 68 Dry Overload analog output 99 Proverload analog output 99 Proverload logic output 96 Flux Wakening Lev parameter, closed loop. 43 Dynamic Braking Resistor Values 172, 173 172 173 Frequency Out analog output. 99 Elevator Duty Cycle Current Rating 162 Elevator System Load Profile 162 Elevator System Load Profile 162 Elevator System Load Profile 162 Elevator Gut General System Control of Spraymareter 103 Ground Fault Liegic output. 97 Encoder Connect user er 23 Encoder Grand Ofst parameter 44 Aground Fault Logic output. 97 Encoder Fault user switch 79 Harmonics, Reducing. 175, 176 Encoder Fault user switch 79 Hill/Lo Gain Src user switch. 79 Encoder Fault user switch 79 Hill/Lo Gain Src user switch. 79 Encoder Fault user switch 79 Hill Like Gain p				
Div Fast Disable user switch				
Dry Verload analog output				
Drv Overload analog output				
Dry Overload logic output.				
Elevator Duty Cycle Current Rating				
Fusing Values				
Elevator Duty Cycle Current Rating	Dynamic Braking Nesistor Values	172, 173		
Elevator Duty Cycle Current Rating	F		Tuesting values imministration	
Elevator Duty Cycle Current Rating 162 Elevator System Load Profilie 162 Ene Position display parameter 103 Enc Revolutions display parameter 103 Encoder CRC Err 123 Encoder Tile System Load Profile 123 Encoder Ang Ofst parameter 76 Encoder Connect user switch 79 Encoder Connection Wrining 28 Encoder Fault user switch 79 Encoder Fault user switch 79 Encoder Fault user switch 79 Encoder Fill logic output 96 Encoder Fill logic output 96 Encoder Pill logic output 96 Encoder Pill logic output 96 Encoder Wrining 27 Encoder Speed display parameter 100 Encoder Voltage Selection 28 Encoder Wrining 27 Encoder Speed display parameter 100 EST IND LOAD CURR display 138 Est Nertia display parameter, closed loop 104 EST IND LOAD CURR display 138 Est Rated RPM display, closed loop 104 Estimating System Inertia 138 Ext Fan En logic output 96 Ext Torque Bias parameter, closed loop 51 Ext Torque Bias parameter 66 Extrn Fault. 124 Envicoble System Inertia 125 Encoder Parameter 126 Envicoble System Inertia 125 Encoder Parameter 125 Encoder	_		G	
Enc Position display parameter	Elevator Duty Cycle Current Rating	162	G	
Enc Revolutions display parameter. 103 Encdr CRC Err 123 Encdr Fit Sense parameter 54 Encod Out of Tol 123 Encoder Ang Ofst parameter. 27-28 Encoder Ang Ofst parameter. 76 Encoder Connect user switch 79 Encoder Fault user switch 79 Encoder Fault user switch 79 Encoder Fli logic output. 96 Encoder Fil logic output. 96 Encoder Fli logic output. 96 Encoder Voltage Selection 28 Encoder Wiring 27 Encoder Speed display parameter 100 Encoder Voltage Selection 28 EST INERTIA display 31 EST Inertia display parameter, closed loop 100 EST NO LOAD CURR display 138 EST Inertia display parameter, closed loop 104 EST INEL TOAD CURR display 138 EST Inertia display parameter, 138 EST RATED RPM display. 138 EST RATED RPM display. 138 EST RATED RPM display. 138 EST RATED RPM display 138 EXT Fan En logic output 96 EXT TOR GS ruser switch 84 EXT Torque Bias parameter, closed loop 104 EXT TOR GS ruser switch 84 EXT Torque Bias parameter 66 EXT TOR GS ruser switch 84 EXT Torque Bias parameter 66 EXT TOR GS ruser switch 84 EXT TOR GS ruser switch 85 EX Radar Dog Ruser 84 EXT TOR GS ruser 94 ENCOMPT 84 ENCOMPT 8				
Encod CRC Err				
Encoder Fit Sense parameter				
Encoder			Ground Fault logic output	97
Encoder Ang Ofst parameter. 76				
Harmonics, Reducing			Н	
Hex Monitor Submenu				
Encoder Connection Wiring				
Hidden Items Submenu				
Encoder Fedeback				
Hit Torque Limit.				
Encoder Fit logic output. 96 Encoder Pulses parameter 42 Encoder Speed display parameter 100 Encoder Voltage Selection 28 Encoder Wining. 27 Encoder Fault OFF 124 Environmental Features 14 Environmental Features 14 EST INERTIA display parameter, closed loop 100 EST NO LOAD CURR display 138 Est Inertia display parameter, closed loop 100 Est Rated RPM display 138 Est Rated RPM display, closed loop 104 Estimating System Inertia. 138 Ext Torque Bias parameter, closed loop 51 Extern Reactance parameter 66 Extra Fault. 124, 125 F F F F F F F F F F F F F F F F F F				
Hunt Prev Time parameter, open loop				
Encoder Voltage Selection				
I I I I I I I I I I			Hunt Prev Time parameter, open loop	70
Encoder Wiring				
Table Tabl			l	
Id Dist Loop Fc parameter, open loop			I Reg Cross Freg parameter, open loop	69
ST INERTIA display				
St Inertia display parameter, closed loop. 100				
SST NO LOAD CURR display.				
ST RATED RPM display				
St Rated RPM display, closed loop				
Limit Integ Gain parameter, open loop				
In Low Gain logic output				
Inertia parameter, closed loop				
Inertia, Estimating System				
Inner Loop Xover parameter			Inertia, Estimating System	138
Input Fusing Values			Inner Loop Xover parameter, closed loop	50
Fan Alarm logic output				
Input Power				
Input Ratings	=/			
Fan Alarm logic output 96 Input Ratings 175, 176 Fan Off Delay parameter 71 Interconnections 23–32 Fast Flux user switch 96 Input Reactor Values 175, 176 Interconnections 23–32 Fault logic output 96 Introduction 13–14 Fault logic output 96 Iq Dist Loop Fc parameter, open loop 69 Fault Reset 85 Iq Dist Loop Gn parameter, open loop 68 Faults, Troubleshooting Guide 117, 118 Iq Integral Gain parameter 67 Fine Tune Ofst parameter 67 Fit Reset Delay parameter 44 Iq Reg Diff Gain parameter 67 Fit Resets / Hour parameter 44 Iq Reg Prop Gain parameter 67 Flux Confirm logic output 96 Flux Current analog output 99 Flux Current display 99 Flux Current display, closed loop 104 Flux Reference display, closed loop 104	F			
Fan Off Delay parameter 71 Interconnections 23–32 Fast Flux user switch 79, 89 Introduction 13–14 Fault logic output 96 Iq Dist Loop Fc parameter, open loop 69 Fault Reset 85 Iq Dist Loop Gn parameter, open loop 68 Faults, Troubleshooting Guide 117, 118 Iq Integral Gain parameter 67 Fine Tune Ofst parameter 67 Iq Reg Diff Gain parameter 67 Flt Reset Delay parameter 44 Iq Reg Prop Gain parameter 67 Flux Confirm logic output 96 I-Reg Inner Loop user switch 79 Flux Current analog output 99 L Flux Output display, closed loop 104 LED, Status 117 Flux Reference display, closed loop 104 Line Filter Values 178	•			
Fast Flux user switch 79, 89 Introduction 13–14 Fault logic output 96 Iq Dist Loop Fc parameter, open loop 69 Fault Reset 85 Iq Dist Loop Gn parameter, open loop 68 Faults, Troubleshooting Guide 117, 118 Iq Integral Gain parameter 67 Fine Tune Ofst parameter 67 Iq Reg Diff Gain parameter 67 Flt Reset Delay parameter 44 Iq Reg Prop Gain parameter 67 Flux Confirm logic output 96 I-Reg Inner Loop user switch 79 Flux Current analog output 99 L Flux Output display, closed loop 104 LED, Status 117 Flux Reference display, closed loop 104 Line Filter Values 178	Fan Alarm logic output	96		
Fast Flux user switch	Fan Off Delay parameter	71		
Fault Reset	Fast Flux user switch	79, 89		
Faults, Troubleshooting Guide				
Fine Tune Ofst parameter 67 Fit Reset Delay parameter 44 Fit Resets / Hour parameter 44 Flux Confirm logic output 96 Flux Current analog output 99 Flux Current display 104 Flux Output display, closed loop 104 Flux Reference display				
Fit Reset Delay parameter				
Flt Resets / Hour parameter				
Flux Confirm logic output 96 Flux Current analog output 99 Flux Current display 104 Flux Output display, closed loop 104 LED, Status 117 Line Filter Values 178				
Flux Current analog output			i-Reg inner Loop user switch	79
Flux Current display			-	
Flux Output display, closed loop			L	
Flux Reference display, closed loop			LED Status	117
Trux Noticitation display, closed toop				
Flux Sat Break parameter, closed loop74				
	Flux Sat Break parameter, closed loop.	/4	Logio input dominotions	4

Logic Inputs C2 Submenu94–9	Output Ratings185
Logic Inputs display10	
Logic Output Connections	
Logic Outputs C3 Submenu96–9	
Logic Outputs display10	
Long Encoder Cable16	
Long Endodor Odbio	Overspeed Level parameter46
M	Overspeed Mult parameter46
M	Overspeed Test Submenu
Mains Dip Enable user switch	
Mains Dip Speed parameter	
Maintenance, General11	
Mlt-Spd to Dly user switch	
Model Number1	
Motor A5 Submenu71–7	
Motor Calculations14	O via Otait 2010i paramotoi iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Motor Current % display10	Ovia Timo Out paramotor
Motor Current display10	
Motor Frequency display10	1
Motor Iron Loss parameter75, 13	
Motor Lead Connections	
Motor Manufacturer Data	
Motor Mech Loss parameter	
Motor Mech Lossparameter	
Motor Mid Volta parameter, open loop	
Motor Mid Volts parameter, open loop	
Motor Min Freq parameter, open loop	
Motor Min Volts parameter, open loop	
Motor Overload display76, 10	
Motor Ovrld Sel user switch	
Motor Ovrload	, , ,
Motor Parameter Calculation13	
Motor Poles parameter	
Motor Rotation user switch	
Motor Torque display10	PreTorque Mult parameter51
Motor Trq Lim logic output	
Motor Voltage display10	
Mounting Holes16	
Mspd Delay parameter54, 6	Priority Msg user switch88
Mspd Tmr Flt	
Mtr Overload See Motor Ovrloa	
Mtr Overload analog output	
Mtr Overload logic output	
Mtr Torque Limit parameter	
Multistep A3 Submenu64–6	
Multi-Step Command Delays	
Multi-Step Speed Command Debounce	
Multi-Step Speed Command Selection6	34
	R
N	Ramp Down En Src user switch80
No Lond Comm 0/ name to the	
No Load Curr % parameter73, 13	D 10: 01
Not Alarm logic output	
Notch Filt Depth parameter	
Notch Filter Description	
Notch Filter Frq parameter	g Rated Excit Freq parameter
	Rated Motor Curr parameter
0	Rated Mtr Power parameter
OLA ENDT ELT	Rated Mtr Speed parameter
OLA INO FLT	
OLA INC FLT12	
Open Loop Performance Adjustments152–5	
Open Loop Start-Up Procedure150–5	
Output Power1	3 Real Time Clock Setup16

Reforming Bus Capacitors	115	Speed Ref analog output	99
Regen Torq Limit parameter		Speed Ref RIs logic output	
Regen Trq Lim logic output		Speed Reference display	100
Relay Output Connections		Speed Reg Rls logic output	98
Replacement Parts	191	Speed Reg Type user switch	
Response parameter, closed loop		Srl Timeout Fault	
Restore Defaults Submenu		Stall Fault Time parameter, open loop	
Reverse Tach		Stall Prev Ena user switch, open loop	
Rotor Align Submenu		Stall Test Ena user switch, open loop	
Rotor Leakage X parameter		Stall Test Flt	
Rotor Position monitor function		Stall Test Level parameter, open loop	
RTR NOT ALIGN		Standards	
Run Command Src user switch		Start Logic display	
Run Commanded logic output			
		Start-Up ProcedureStator Leakage X parameter	
Run Confirm logic output			
Run Delay Timer parameter		Stator Resist parameter	75, 139
Rx Com Status display		Status LEDs	
Rx Error Count		Stopping Mode user switch	
RX Logic Input display	101	Switching Delay parameter, open loop	70
s		Т	
S-Curve Abort user switch	80	Tach Rate Cmd analog output	99
S-Curves A2 Submenu		Tach Rate Cmd display	
Selecting Logic Input Definitions		Tach Rate Gain parameter	
Ser2 Flt Mode user switch		Torq Boost Gain parameter, open loop	
Ser2 Fit Tol parameter		Torq Boost Time parameter, open loop	
Ser2 Insp Spd parameter		Torq Current analog output	
Ser2 Rs Crp Spd parameter		Torq Voltage analog output	
Ser2 Rs Crp Time parameter		Torque Current display	
Ser2 Spd Flt		Torque Output analog output	
Serial Cnt / Rev parameter		Torque Ref analog output	
Serial Mode user switch		Torque Reference display	
Setup Flt		Torque Voltage display	
Short Circuit Flt		TQ LIM 2HI 4CUBE	
Slip Comp Gain parameter, open loop		Troubleshooting Guide	
Slip Comp Time parameter, open loop		Trq Const Scale parameter	
Slip Frequency analog output		Trq Lim Msg Dly parameter	43
Slip Frequency display			
Spare Parts		U	
Spd Command Bias parameter		Undervolt Flt	124
Spd Command Mult parameter			
Spd Command Src user switch		Undervolt Flt logic output	
SPD DEV		Units U0 Submenu	
Spd Dev Alm Lvl parameter		Up to Spd Level parameter	
Spd Dev Flt Lvl parameter		Up to Speed logic output	
Spd Dev Hi Lvl parameter	43	Up/Dwn Threshold parameter	
Spd Dev Lo Level parameter	48	User Switches C1 Submenu	
Spd Dev Time parameter		UV Alarm	
Spd Phase Margin parameter		UV Alarm Level parameter	
Spd Ref Release user switch		UV Alarm logic output	
Spd Reg Torq Cmd display		UV Fault Level parameter	66
Spd Rg Tq Cmd analog output			
Speed Command analog output		V	
Speed Command display		\//Lla Foult	124
Speed Dev logic output		V/Hz Fault	
Speed Dev Low logic output		Vc Correction parameter, open loop	
Speed Deviation Alarm		Voltage Out analog output	99
Speed Deviation Low			
Speed Error analog output		W	
Speed Error display		Weight	166
Speed Feedback display		vv & igi it	100
Speed FeedbackTracking	57		
Speed Feedbk analog output	99		

Z	Zero Speed logic output	98
Zero Speed Level parameter49	Zero Speed Time parameter	49

HPV 900 Series 2

Data subject to change without notice. HPV 900 S2 and Series 2 is a trademark of Magnetek, Inc.

Magnetek Elevator Products N50 W13775 Overview Dr Menomonee Falls, Wisconsin 53051 (800) 236-1705, (262) 252-6999, FAX (262) 790-4142 http://www.elevatordrives.com

Magnetek Elevator Products - Europe 20 Drake Mews, Crownhill Milton Keynes, Bucks MK8 0ER UK +44(0) 1908 261427, FAX +44(0) 1908 261674

